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Abstract. Matalas et al. (1975) (MSW) found that the simulated values of flood peaks in
a region using various common forms of flood frequency distributions did not reproduce
the empirical skew statistics for 14 different regions covering the conterminous United
States. Specifically, the field data always demonstrated a higher value of standard
deviation of skew for a given sample value of mean skew than did the simulations. MSW
termed this difference "separation" and further showed that it could not be explained
either by autocorrelation of flood peaks or as a small sample property. In this paper, we
discuss an explanation of this property using the recently developing scaling theories of
regional floods. It is shown that in a homogeneous region, recently defined by us,
separation would result from the multiscaling structure of flood peaks. Separation would
not occur if floods obey simple scaling, nor would separation necessarily occur with
heterogeneity or mixing among different homogeneous regions. Mixing must be of a
particular kind in order to cause separation. The use of normalized flood frequencies
having mean of zero and variance of 1 in the simulations carried out by MSW is shown to
be consistent with the assumption of index flood or simple scaling but not multiscaling. In
the 14 "megaregions" analyzed by MSW, mixing among subregions within each
megaregion may add to the magnitude of separation. The separation in 14 regions is
physically interpreted based on different physical mechanisms that have been recently
hypothesized by us to be responsible for the presence of simple scaling or multiscaling in
floods.
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1. Introduction
There has been a continuing interest in regional flood fre

quency analysis for over 30 years [Daliymple, 1960; Dawdy,
1961; Benson, 1962]. Two broad lines of research are respon
sible for this interest. The first has been devoted to an under
standing of quantitative relationships between landforms and
peak flows or floods, because floods are viewed as one of the
main geomorphic agents that shape drainage networks and
landscapes [Gupta and Waymire, 1989; Leopold et al., 1964].
The second broad line of research has been motivated by the
flood insurance program, its need for consistency in the meth
ods of analysis, and its establishment of standards for flood
frequency analysis [Hydrology Subcommittee, 1982]. Another
source of interest has been in the optimization of information
content concerning regional hydrology derived from the sam
ples of flood peaks collected at surface water streamgaging
stations. Some of these issues are discussed in a report of the
National Research Council (NRC) [1988].

Within the last few years, a new theoretical framework is
beginning to be developed which is aimed at understanding the
statistical structure of regional floods in terms of their physical
generating mechanisms. This framework for regional flood fre
quency is based on the contemporary ideas of scaling invari-
ance [Gupta et al., 1994; Smith, 1992]. Specifically, one of the
key issues is to understand how the scaling invariance in floods
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is related to that in precipitation (both rainfall and snowmelt)
and to the three-dimensional (3-D) geometry of river networks
[Gupta and Waymire, 1995]. For example, Gupta and Dawdy
[1994, 1995] have published preliminary findings with respect
to the physical basis of scaling invariance in floods in terms of
physical processes responsible for generating floods. Since this
new theory is in its infancy, it is very important to understand
the extent to which it can unify flood data, as well as the physics
and the statistical structure of runoff and floods. This premise
would serve as a basis for the further development of this
theory.

The past approaches to flood frequency can be grouped into
three broad categories. The first is the "quantile regression
approach" of the U.S. Geological Survey (USGS) [Benson,
1962]. It has been used extensively by the USGS since the
mid-1960s. In this approach, each flood quantile (i.e., flows
with specified probability of exceedance) is regressed against
multiple basin characteristics, such as drainage area, mean
basin slope, etc., using multiple regression analysis. Although
various basin characteristics are used in the regional relations,
there is no physical foundation for their inclusion or exclusion,
and they are treated purely as statistical variables. Conse
quently, this line of investigation has remained data intensive
and essentially statistical in nature.

Development of the second set of approaches to regional
flood frequency has been based mostly on the index flood
assumption. The main emphasis has been on the development
of statistically robust regional estimators of flood distributions
[Vogel and Fennessey, 1993] and the delineation of homoge-
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neous regions, or those regions in which the index flood as
sumption holds. It implies that the coefficient of variation (CV)
of annual floods is a constant. It is also widely recognized that
these homogeneous regions are not simply geographical areas
and that it may be difficult to portray them effectively on maps
[NRC, 1988, p. 38]. Extensive data provided by the USGS
exhibit that the index flood assumption does not hold widely;
see the discussion by Gupta et al. [1994] and the data analysis
by Gupta and Dawdy [1995]. Moreover, this approach does not
address the basic issue of how to delineate homogeneous re
gions physically and understand the statistics of regional floods
in terms of flood hydrology.

The third set of approaches to flood frequency combine a
basin response function with the rainfall input of a given fre
quency. In this respect, they can be called "physically based"
[Eagleson, 1972; Sivapalan et al., 1990]. The existing body of
work on this topic has focused mostly on deriving flood fre
quency distribution at a fixed site rather than on their regional
behavior. Therefore connections and consistency between
physically based approaches and regional approaches, either
empirical or statistical, for the most part have remained unex
plored; see Gupta and Dawdy [1994] for a further discussion of
this issue. This brief overview illustrates a real need to develop
a unified theoretical framework that includes data, the hydrol
ogy of the system, and the statistics of the system. This issue
furnishes the context within which the physical basis of simple
scaling and multiscaling in floods, and its implications for the
regional structure of skewness separation are examined in this
paper.

Three papers in the early discussions of the statistical basis
for regional flood frequency analysis raised several important
points. The first of these was a study of the moments of sample
statistics for several standard flood frequency distributions that
might be used for the analysis of flood data [Wallis et al., 1974].
Wallis et al. showed that sample estimates of skewness ap
proached an upper bound as a function of the sample size. This
means that no matter how large the population skew, the
sample values of skew are bounded, and the bound is deter
mined by the sample size. The second of the three papers gave
a mathematical explanation for the upper limit on sample skew
estimates [Kirby, 1974]. The third paper [Matalas et al., 1975]
(hereinafter referred to as MSW), the significance of which
appears to have been lost in the literature, applied the findings
of the first two papers to the analysis of field data. That paper
drew two major conclusions. The first was that the estimates of
mean and standard deviation of regional skew depend on the
sample size. The second was that simulated values of peaks
using various common forms of flood frequency distribution
could not reproduce the empirical skew statistics for 14 differ
ent "mega" regions covering the conterminous United States.
Specifically, the field data always demonstrated a higher value
of standard deviation of skew for a given sample value of mean
skew than did the simulations. MSW termed this difference
"separation" and further showed that it could not be explained
by autocorrelation of flood peaks and was not a small sample
property. They mentioned but did not explore two other pos
sible causes of separation, namely, spatial mixing of values of
skewness g among subregions within each megaregion, and
mixing of values of g in time [MSW, 1975, p. 818].

MSW chose as regions for analysis the 14 parts into which
the USGS divides the United States for publication of data.
Each of these regions shown in Figure 1 comprises a major
basin, such as the Missouri or Colombia. In its regional flood
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Figure 1. Regional hydrologic division of the United States
[from Matalas et al., 1975].

frequency analysis, the USGS analyzes data on a state by state
basis. It divides states into several regions, each of which is
considered "homogeneous." The issue of what is meant by
homogeneity is controversial [Gupta et al., 1994]. However, the
definition of homogeneity given by Gupta et al. [1994] refers to
physical geographic regions, and for many regions it agrees
with the delineation of homogeneous regions by the USGS.
Therefore, each of the 14 regions analyzed by MSW combines
many of the homogeneous regions into a megaregion. This
combination may cause separation by spatial mixing of values
of skewness g, as was mentioned by MSW. We demonstrate
that not all mixing causes separation but rather that the mixing
must be of a particular kind. Moreover, there is an underlying
physical cause that creates skewness separation in otherwise
homogeneous regions defined by Gupta et al. [1994]. Therefore
by looking at the structure of flood peaks in terms of the
scaling statistics and their physical generating mechanisms, the
separation observed by MSW can be interpreted physically in
a qualitative manner. Our main focus in this paper is to explain
this issue and discuss its implications for the further develop
ment of a physically based theory of regional flood frequency.

2. Brief Review of MSW's Findings Regarding
Skew Separation

MSW showed the results of 100,000 simulations of various
lengths assuming several common statistical distributions: nor
mal, Gumbel, three-parameter lognormal (3PLN), Pearson III
(not log Pearson III), Weibull, Pareto, and uniform. The sam
ple values of skew and their standard deviations were com
pared with field data. These results are shown in their Figures
2-4, of which Figure 4 for record length of 30 years is repro
duced here as Figure 2. The skewness separation can be clearly
seen in Figure 2, since the simulated values of the average skew
versus its standard deviation fall below the sample statistics
from field data.

Several of the candidate flood frequency distributions could
be rejected a priori from consideration for use in flood fre
quency analysis. The normal and the uniform distributions
have an expected skew of zero. The Gumbel has a fixed pop
ulation skew. Therefore they should not be expected to repro
duce the variation of the field data. In addition, the simulated
Pareto distribution had a small range of skew values, the sizes
of which were beyond the range of the field data for most of
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Figure 2. Mean skew versus standard deviation of skew for /; = 30, historic and simulated data, [from
Matalas et al., 1975]. The numbers indicate the regions.

the 14 regions. This left three candidate distributions, namely,
Pearson III, Weibull, and 3PLN. Of those three potential can
didate distributions, 3PLN comes closest to the data, insofar as
it gives a greater skew standard deviation for a fixed mean
compared with the other two. Therefore it is instructive to
investigate the assumptions of MSW in their use of the 3PLN.

Let X be lognormal with mean /xv = 0, variance o^ - 1,
and skewness g; let Y be normal with mean fxy and variance
of; and let a be the third parameter added as a lower bound
to the values of X, i.e.,

X = a + exp (Y) (1)
The three equations relating the three unknowns, /xv, of, and
g, arc given by equations (8)-( 10) of MSW. It can be seen from
their equation (10) that once a population skew g is chosen, it
determines of. Equation (9) of MSW shows that ay deter
mines the mean fiy, and these two together determine the
additive term ./. Thus for any population skew chosen, the
distribution of the normalized random variable X with mean of
zero and variance of 1 can be determined from (1). MSW dealt
only with normalized random variables in their simulations of
regional floods. They found, as is shown in Figure 2, that for a
given mean skew the empirical skew standard deviation was
always systematically larger than the simulated standard devi
ation. As we have already discussed, this separation could not
be explained either by autocorrelation of flood peaks or from
the small sample property, although spatial mixing of values of
skewness g may partially explain their results. Their basic as
sumption that a normalized random variable can describe
floods at different gauges within a region implies that these
variates do not depend on their spatial location within a region,
however defined. This issue is very important to keep in mind
in order to understand the consequences of two different scal
ing assumptions on skew separation in floods, which will now
be discussed.

3. Simple and Mult iscal ing Theories
and Skew Separation

Gupta et al. [1994] have argued that a key step in the for
mulation of a physically based spatial statistical theory of an
nual floods is to view a channel network as a natural indexing
parameter set for the random field of flows. Invariance of the

probability distributions of peak flows under translation on this
indexing set defines statistical homogeneity. It suggests that
floods in a homogeneous region can be indexed by network
magnitude, or equivalently the drainage area, and nothing else.
Gupta and Dawdy [1995] have illustrated that the widely used
quantile regression method of the USGS provides one simple
criterion to approximately designate geographic regions which
are hydrologically homogeneous. Those empirically derived
USGS homogeneous regions that do not meet the criterion of
homogeneity defined by Gupta et al. [ 1994] because of the use
of other variables in addition to drainage area will require a
general look at the issue of flood heterogeneity.

Let the random variables representing the peak floods from
k basins of drainage areas A,-, i = 1, 2, •••, k within a
homogeneous region be denoted by Q(A,), i = 1, 2, • • •, k.
Let E[Qr (A/)], r = 1, 2, ••• denote the /th expectation or
the statistical moment. Then the mean /x;, the standard devi
ation tr,, and the coefficient of skew, _/,,/= 1, 2, • • •, k, can
be expressed as

H, = E[Q(A,)]

cr^ {E[Q2(At)- \ - E\Q(A^Y

(2)

(3)

#, = {E[Q\A$\ ~ 3/x,£[G2(^,)] + 2p.fi/oj (4)

Given the k values of skew within a homogeneous region, one
can define the regional mean skew m(g) and the regional
standard deviation of skew, s(g), as

1
m(g) =£ 2 Si

s(9) = T. 2. gt-m(9)

(5)

(6)

We will now examine the implications of the assumptions of
simple sealing and multiscaling of peak floods on the statistics
of regional skew defined in (5) and (6). It has been shown that
simple scaling leads to a constant coefficient of variation of
floods over a homogeneous region [Smith, 1992; Gupta et al.,
1994]. Further, Gupta and Dawdy [1995] have found that for
some of the regions used by the USGS in their regional flood
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frequency analysis, the log-log relation of flood quantiles to
drainage area has constant slopes. Floods in these regions
seem to be generated mostly by snowmelt runoff. The con
stancy of CV and the constancy of slopes are theoretical con
sequences of the property of simple scaling in floods [Gupta et
al., 1994]. As was already mentioned, the index flood assump
tion also results in a constant CV over a homogeneous region.
However, as Gupta et al. [1994] have discussed, the definition
of homogeneity in the current literature based on the con
stancy of CV is ad hoc.

To understand simple scaling in terms of statistical mo
ments, let A > 0, defined as the ratio of drainage areasAJA,
for some /' and;', be a dimensionless scalar. If the regional peal-
flows obey simple scaling, then it follows from its definition
that the moments can be written as

EIQXA,)] = (Al/Aj)reE[Qr(Aj)] r= 1, 2, (7)

where the parameter 6 can be either positive or negative and is
known as the scaling exponent [Gupta and Waymire, 1990, p.
2001]. Equation (7) says that given the moments of floods with
respect to a reference basin with area.4,, the moments for any
other basin of area A, can be computed from (7) simply by
knowing the exponent 6. In further discussion we take the
reference basin to be.4„, and let E[Qr (AQ)] = /;._ in (7) to
write it as

E[Qr(A,)] = mXAMo) r= 1, 2, (8)

The reader can check by substituting (8) into (4) that

g , = g i = l , 2 , • • • ( 9 )

because the dependence of Q(A,) on the scale parameter Af
drops out. Another way to view this result is that if Q(At)
obeying simple scaling are "normalized" by subtracting the
mean /x, and dividing by <r,, then the normalized variables Z,
have a common probability distribution, Z, i.e.,

i= 1, 2, (10)

where = denotes the equality in probability distributions. It is
easy to see from (10) that normalized floods in a homogeneous
region obeying simple scaling exhibit a common skewness. This
property is similar, but not identical to the index flood assump
tion widely used in the flood frequency literature [NRC, 1988;
Gupta et al., 1994]. In view of this property, it follows simply
from (5) and (6) that

m ( g ) = g s ( g ) = 0 (11)

Equation (10) shows that the regional skewness is the same as
the station skewness and therefore does not exhibit skewness
separation. MSW considered only normalized floods and as
sumed that (10) holds. The reader should note that the expres
sions regarding skew statistics in (11) follow from simple scal
ing and do not depend on any specific probability distributional
assumptions about the flood peaks.

Gupta and Dawdy [1995] have observed that the log-log
relations of flood quantiles to drainage areas do not have
constant slopes for many regions used in the USGS regional
flood frequency analyses. In fact, in most cases the slopes
decrease as the return period increases. Floods in these regions
seem to be generated mostly by rainfall. Gupta et al. [1994]
have shown that this property of quantiles is exhibited by

floods obeying multiscaling. A maximum likelihood test carried
out by Smith [1992] did not reject the hypothesis of multiscaling
over simple scaling for floods in central Appalachia in the United
States.

To understand multiscaling in terms of statistical moments,
let A, a dimensionless scalar, denote the ratio of drainage areas
AJAq for some i. Here, A0 is a reference drainage area.
Unlike simple scaling, the multiscaling theory gives two distinct
representations depending on whether A < 1 or A > 1. Pre
liminary results of Smith [1992] and Gupta et al. [1994] suggest
that multiscaling representation corresponding to A < 1 ap
plies to basins larger than 50 km2 or so in their drainage areas.
Current research on multifractal representation of spatial rain
fall based in the theory of random cascades [Gupta and
Waymire, 1993; Lovejoy and Schertzer, 1990] suggests that mul
tiscaling in floods in large basins inherits this "signature" from
the spatial variability of rainfall. Gupta et al. [1994] have sug
gested that the scaling structure of floods in small basins is
determined by basin response rather than precipitation input.
Their results from a simple rainfall-runoff simulation experi
ment show that the scaling in floods in small basins may be
exhibited by the representation corresponding to A > 1, but
this issue needs to be investigated further.

In order to fix ideas, we will take A < 1, even though this
constraint does not affect the results given below. This condi
tion requires that the reference area A0 is larger than all
drainage areas in a homogeneous region. Under the assump
tion of multiscaling of floods within a homogeneous region, it
follows from its definition that the moments can be written as

E[Qr(Ai)] = (AJA^EiQU,)] (12)

' • = 1 , 2 , i = 1, 2, • • •, k

Here, the scaling exponent function is non-linear and concave
in r, i.e.,

d2B(r)
d ( r ) ± r 0 , - j p - < Q r = \ , 2 , • • • ( 1 3 )

For example, d(r) = a - br2, if Q(A) is lognormal [Gupta
et ai, 1994; Smith, 1992]. This feature of multiscaling for the
broad class of log-Levy models of which the lognormal is a
special case is explained by Gupta and Waymire [1990]. This
nonlinearity in the exponents of the drainage area distin
guishes it from simple scaling. As we will now explain, this
property leads to skew separation in a homogeneous hydro-
logic region.

First note that if we apply (10) to normalize the flood peaks
Q(A,), i = 1, 2, •••, k, in a region obeying multiscaling
given by (12), the variables Z, do not become independent of
their scale parameters /_,-. In other words, the probability dis
tributions of the normalized peak flows still depend on their
drainage areas and therefore are not identically distributed.
Consequently, any two basins with different drainage areas in a
homogeneous region have different skews, i.e.,

g , * g , A ^ A j (14)

Typically, in a homogeneous region, such as those identified in
the USGS regional flood frequency reports, the drainage areas
of gaged streams cover a broad range of variation. Therefore,
skew separation directly follows from (12), because for a given
mean skew m(g) one obtains
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s ( g ) > 0 (15)

v .

This result in (15) depends only on the multiscaling assumption
and is independent of the specific distributional assumptions
on flood peaks. The reader should note that (15) will still be
true even when the population of basins in a region consists of
both small and large basins, as typically is the case.

We have already discussed in section 2 that in the theoretical
simulations carried out by MSW, different normalized flood
frequency models were assumed to describe regional floods. It
was assumed that each of these models applies to all the gaging
stations within a region after normalization. This is tantamount
to assuming either simple scaling or the index flood method.
This assumption implies that theoretically, s(g) = 0, regard
less of what specific flood frequency model is chosen. In their
simulations, MSW fixed the theoretical skew to match the
empirical mean skew m(g) in a region and noted that the
simulated skew standard deviation could not reproduce the
empirically computed standard deviation of skew values for
any of the 14 regions. The latter were found to be systemati
cally higher than the simulated values and could not be ex
plained by any of the seven models simulated by MSW, which
included the 3PLN. Clearly, if floods obey multiscaling in a
region, it then follows from (13) that the skew standard devi
ation will always be higher than if they obey simple scaling,
thereby exhibiting separation. This result is independent of
specific model assumptions about flood frequency distribu
tions. Since each of the 14 regions analyzed by MSW combines
many of the homogeneous regions into a megaregion, this
combination may cause separation by spatial mixing of values
of skewness g, as was mentioned by MSW. Let us now examine
this issue of mixing among regions.

4. Mixing, Heterogeneity and Separation
Mixing implies heterogeneity. Combining two homogeneous

regions creates mixing through their difference. Therefore
what constitutes a homogeneous region? We will now explain
homogeneity [Gupta et al., 1994, p. 3409] in terms of the scaling
assumptions discussed above. A homogeneous region has, for
all gaging locations within the region, flood peaks that follow
probability distributions which are rescaled versions of one
another, based only on drainage area and nothing else. Rescal-
ing can obey either simple scaling or multiscaling in a homo
geneous region.

Consider two homogeneous regions, 1 and 2, for which flood
peaks in each obey simple scaling given by (8). The exponents
are 0, and 02, and the moments of floods with respect to the
reference drainage basin A0 are m\ and m2, r = 1, 2, •••,
respectively. Now assume that the moments are related by

m; = cm; (16)
where c > 0 is some constant. It now follows from (10) that
these two regions have the same CV and skewness g. There
fore mixing of these two regions would not create separation.
It may also be noted that regions 1 and 2 have the same CV,
but the flood peak probability distributions are not the rescaled
versions of each other with respect to drainage area, and there
fore are not homogeneous. This point illustrates that the con
stancy of CV as a definition of homogeneity is ad hoc and not
useful, as was emphasized by Gupta et al. [1994]. A similar
argument can be made for multiscaling, where mixing of ho
mogeneous regions will not cause separation but multiscaling

will. The condition given in (16) implies that the quantiles of
the floods for the reference drainage area are constant multi
ples of each other by a factor c. We discuss below that four
USGS regions in western Washington State exhibit this condi
tion: they are simple scaling, nonhomogeneous, or a mixture,
but they do not exhibit separation.

5. Physical Interpretations of Skew Separation
Observed by MSW

The regions analyzed by the USGS in its statewide regional
flood frequency reports are much smaller than the 14 regions
of the United States analyzed by MSW. In the USGS reports,
each state is typically divided into 6-10 regions. On the basis of
our theoretical discussion given above, one expects that the
regions in a state in which floods exhibit simple scaling would
more closely approach the relation of mean simulated skew to
standard deviation of simulated skew developed by MSW. By
contrast, regions exhibiting multiscaling would exhibit a higher
skew standard deviation for the same mean skew than that
given by regions with simple scaling. In addition, the distribu
tion of flood peaks exhibiting either simple scaling ormulti-
scaling need not be the same from one region to another.
When several such regions are combined, as by MSW, the
pooled data would tend to have an even greater skew standard
deviation than data from individual regions because of spatial
mixing.

Gupta and Dawdy [1995] hypothesized that simple scaling as
opposed to multiscaling results from differences in the physical
mechanism for generating floods. Regions controlled primarily
by snowmelt peaks in the spring might tend to exhibit simple
scaling. Flood peaks in such a region are a function of average
basin snowpack for the year and maximum incoming radiation,
and they tend to be similar over the region. Similarity in sta
tistical variability over a region is what simple scaling exhibits.
On the other hand, in regions where most peaks are caused by
convection-dominated rainfall, such as summer thunderstorms
and other frontal storms, floods tend to exhibit multiscaling.

It is instructive to analyze the separation of the 14 parts from
the general tendency of the 3PLN line (double daggers) in
Figure 2 in terms of the physical generating mechanisms of
floods discussed above. Region 14 contains the Pacific slope
basins in Oregon and the lower Columbia River Basin. The
desert regions of eastern Oregon flow into the Snake River or
the Great Basin and are not included in region 14. Region 14
has a Mediterranean climate with high rainfall during some
6-8 months of the year. Almost all of the high peaks are
caused by frontal systems from off the Pacific Coast, and all
basins are subject to similar systems. Therefore there is some
degree of uniformity of flood hydrology. The hydrologic con
sequence of that seems to be exhibited in Figure 2, as the data
most nearly approach the 3PLN line. The plot of these data is
supported by the results of the USGS regional flood frequency
report for Washington State [Jennings et al., 1994]. Regions I to
IV, which comprise the western third of the state, all have
drainage area exponents for all quantiles of either 0.85 or 0.86,
which shows a simple scaling structure for all the regions
[Gupta and Dawdy, 1995]. Similarly, western Oregon has uni
form exponents of 0.88 in the Willamette and 0.86 to 0.90 in
the Rogue-Umpqua basins. The coast region has exponents
varying from 0.92 to 0.96. The almost constant exponents
throughout part 14 would lead to the lack of separation shown
by the MSW analysis. Thus uniform frontal systems appear to



2766 DAWDY AND GUPTA: MULTISCALING IN REGIONAL FLOODS

produce simple scaling. The physical basis for this remains
unclear and should be investigated further.

Even more interesting, MSW region 14 exhibits the fact that
mixing of regions need not necessarily produce separation.
USGS regions I to IV in western Washington have flood quan
tile discharges which differ from region to region by a constant
factor of up to 3 times. Their mixing is of the kind described in
section 4. Thus the combined USGS regions are not homoge
neous in that they produce floods of considerably different
magnitudes for the same drainage area. Yet when combined
with other similar homogeneous regions, they do not produce
separation. Thus mixing may be a cause of some of the sepa
ration in MSW, but region 14 demonstrates that mixing need
not cause separation. The mixing must be of a particular kind
in order to cause separation.

The regions with greatest deviation from 3PLN in Figure 2
are 7, 8, and 10. Region 7 is the lower Mississippi River Basin,
which includes the Red River and the Canadian River. Thus
the western drainage of region 7 has less than 2.5 cm of runoff
per year and is combined with parts of Louisiana and Arkansas
with much greater annual runoff. Thus region 7 should be
expected to have variability among basins in their flood distri
butions, and this is exhibited in Figure 2. Region 8 drains most
of Texas, including the Pecos River and most of west Texas
plus the Rio Grande. The upper Rio Grande is snowmelt
driven, but most of region 8 drains semi-arid and arid regions.
That variability also is exhibited in Figure 2.

Region 10 drains the Great Basin. Some parts of Utah in
region 10 are snowmelt driven. Those basins are combined
with most of Nevada and the southern California desert. The
overall variability of part 10 is exhibited by the large separation
in Figure 2.

Much of the eastern United States is characterized by a
humid climate, with rainfall distributed rather evenly through
out the year. Occasional hurricanes pass through and cause
major floods locally. In the northern parts, spring snowmelt
may cause the annual flood event in many years. However,
there is not the extreme variability of rainfall and floods expe
rienced in the arid west. Thus parts 1, 2, 3, and 4, the part of
the country east of the Mississippi but including the Ohio
River, exhibit similar separation in Figure 2. Their separation
is much less than that of 7, 8, or 10, but more than that of 14.
They have similar climates and they exhibit similar separation.

If regions for analysis in the MSW simulations coincided
with the USGS statewide flood frequency report regions, the
amount of separation would decrease, but many of those re
gions would exhibit separation because they exhibit multiscal
ing. On the other hand, those regions that exhibit simple scal
ing in their quantile flood prediction equations would exhibit
little or no separation, other than as the result of random
scatter of estimation or due to small sample size. Therefore
multiscaling provides a physical explanation for separation in a
hydrologically homogeneous region defined by Gupta et al.
[1994] and is independent of any effects of mixing among
regions.

6. Conclusions and Recommendations
The first conclusion of MSW is that regional estimates of

skew should be conditioned on the length of record. This is an
important result, and it follows directly from Kirby [1974]. The
second conclusion of MSW is that skew separation is "essen
tially" independent of Hood frequency model assumptions.

Our results support this conclusion. As we have shown here,
the magnitude of skew separation depends on (1) the scaling
structure or the generating mechanism within a homogeneous
region and (2) heterogeneity (mixing) among regions, if several
regions are pooled to form a "megaregion" as was done by
MSW and if the mixing is of a particular type. In addition,
simple scaling seems to be related to snowmelt regions and to
some regions with floods caused by rainfall. This finding aug
ments the results of Gupta and Dawdy [1995]. The physical
driving mechanism for simple scaling and multiscaling in floods
needs further investigation.

It is our view that the 14 regions defined by the USGS are
too large to enable one to test the implications of two different
scaling assumptions on skew separation. USGS statewide re
gions defined as homogenous on the basis of field data would
be a more valid means for comparison [see Jennings et al.,
1994]. Perhaps a study similar to that of MSW could be un
dertaken to determine how the sample skew varies with length
of record, and that variation could be related to the character
istics of simulated records to try to recover the lost information
as a result of limited sampling. However, any such simulations
must be based upon a proper underlying generating mecha
nism for flood flows. The choice of generating mechanism can
be determined by inspection of the field data, which in turn
would suggest whether simulations should be based upon sim
ple scaling or multiscaling. As has already been discussed by
Gupta and Dawdy [1995], information concerning simple scal
ing and multiscaling is embedded in the USGS quantile regres
sion equations for many regions used by the USGS. However,
because of the use of other variables in addition to drainage
area in the quantile analysis, not all the empirically defined
USGS homogeneous regions meet the criterion of homogene
ity defined by Gupta et al. [1994]. A proper resolution of this
issue requires a general look at the issue of regional hetero
geneity within the scaling framework.

In view of basin-responsc-dominateel scaling structure of
floods being suggested for small basins [Gupta and Dawdy,
1995], the multiscaling theory in small basins differs from that
in large basins and should be developed separately. Similarly,
further research is needed on the important topic of compu
tation of scaling exponents of floods in terms of precipitation,
and other parameters governing basin response, for instance,
e.g., channel network geomorphology, so that small sample
information in the estimation of flood statistics can be aug
mented on the basis of a physical understanding of regional
flood frequencies.
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