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Chaos and complexity in measles models:
A comparative numerical study
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Recurrent epidemics of measles in developed countries offer a proving ground for
current theories of complicated dynamics in ecological and epidemiological systems.
This paper contrasts the basic forced SEIR model for measles with a variety of more
complicated and realistic models, showing that variations in seasonal forcing and
age-structured mixing patterns can generate a wide range of global dynamics. The
well-known chaotic dynamics of the forced SEIR model appear to be absent from
more realistic models, suppressed by the buffering effect of a low-risk group of
pre-school children. These results, and the variety of measles dynamics seen in real
populations with different demographic and geographic patterns, point out the need
for age- and spatially-structured measles models and suggest caution in the con-
struction of models for complicated systems.
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1. Introduction

The dynamics of measles in the human populations of developed countries have
generated two large bodies of modelling analysis, from the perspectives of epidemi-
ology and of ecological dynamics. Measles was a serious public health problem in
developed countries before the advent of mass vaccination programmes (Anderson,
1982) and continues to kill more than a million children per year in developing
countries (Mclean, 1986).

Epidemiologists have explored the dynamics of childhood diseases in general and
measles in particular in great detail, with some success. A large quantitative literature
explores the dynamic effects of different vaccination strategies on age-structured
models, including such realistic complexities as different mixing patterns and maternal
immunity (Anderson & May, 1983, 1985; Hethcote, 1988; Tudor, 1985; Greenhalgh,
1988a, b).

Researchers in ecological dynamics, on the other hand, have focused on the
irregular recurring epidemics occurring at periods of two to four years in large cities
such as Copenhagen and New York City (Sugihara & May, 1990; Schaffer & Kot,
1985; Olsen et al., 1988; Olsen & Schaffer, 1990; Sugihara et al., 1990; Rand & Wilson,
1991; Nychka et al., 1992). These cycles are caused by exhaustion and subsequent
build-up of susceptibles in the population and are kept going by seasonal changes
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in virus transmission. Although epidemics are more regular in some places, for
example England and Wales, the measles host-microparasite system is still one of
the best candidates for chaotic dynamics in an ecological system (Schaffer, 1985;
Schaffer & Kot, 1985).

The simplest measles model, the seasonally forced SEIR model (Schwartz, 1985;
Smith, 1982b; Schwartz & Smith, 1983; Aron & Schwartz, 1984), generates an
extremely rich spectrum of dynamical behaviour, but the behaviour of this simple
homogeneous system is sensitive to added heterogeneity in the system; more
biologically realistic models can suppress chaotic dynamics (Bolker & Grenfell,
1993). Conclusions from these realistic models bear strongly on important general
questions of heterogeneity, persistence, and chaos in ecological and epidemiological
systems.

This paper gives a formal structure for a family of deterministic models that
spans the sinusoidally forced SEIR and a realistic age-structured (RAS) model
(Schenzle, 1984), from the simplest to the most biologically complex measles
model currently present in the literature. The paper defines a general class of measles
models, describes the SEIR and RAS model in terms of the general definition, and
specifies a two-dimensional (age structure x seasonal pattern) family of models
interpolating between the SEIR and RAS models. This family of models shows a
range of dynamics from large-amplitude chaos to regular biennial patterns; the paper
explores and attempts to explain varying dynamics in terms of epidemiological
mechanisms.

2. Basic epidemiology of measles

The natural history of measles infections is relatively simple (Black, 1984), lending
itself to straightforward compartmental modelling. Strain variation is minimal, carrier
states rare or absent, and immunity is lifelong in immunocompetent individuals
(Black, 1984). Children are born susceptible, after a 6-9 month period of neonatal
immunity (Black, 1984). When virus is transferred from an infectious individual,
usually by aerosol particles, susceptible children become exposed or latent for 6-9
days, after which they are infective, capable of transmitting the disease to others, for
6—7 days; clinical symptoms of rash and fever appear about 5 days into the infectious
period. After measles runs its course, individuals gain lifelong immunity, effectively
leaving the epidemiological system.

The most familiar mathematical formulation of these epidemiological facts is the
SEIR (susceptible/exposed/infective/recovered) model, which divides the population
into these categories, assuming that the population is otherwise homogeneous, and
represents the flow of individuals through successive compartments by ordinary
differential equations (ODEs). Recent extensions of the SEIR model have included
heterogeneities in terms of age (Tudor, 1985; Anderson & May, 1985; Schenzle, 1984;
Greenhalgh, 1987, 1988a, b; Hethcote, 1988; Griffiths, 1974; Dietz & Schenzle, 1985),
seasonality (Aron & Schwartz, 1984; Schwartz & Smith, 1983; Schwartz, 1985, 1992;
Smith, 1982b; Schenzle, 1984), and spatial structure (Bartlett, 1957, 1960; Murray &
Cliff, 1975; Schwartz, 1992).
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3. Measles models
3.1 General model

A general partial differential equation (PDE) model which encompasses a variety of
the models in the literature and gives a formal structure for exploring the dynamical
effects of various heterogeneities is given below. It captures the basic features of
measles epidemiology discussed above and allows for differences in transmission
according to age and season. This model extends the formulation given by May
(1986) by making the force of infection A a function of both age a and time ¢. As
discussed by Anderson & May (1983), the combined derivative (8/dt + 8/da) simply
represents the fact that individuals continuously change in both age and epidemio-
logical status, and that they age at the same rate at which time passes. With enough
simplification or computational power, these equations can be integrated over age
to give equilibrium solutions of the epidemiological age structure of the population,
or integrated over time to give time-dependent epidemic curves. The equations are

\
gﬁ + g:g- = — [}L(a, ) + .u(a)]S(a, t),
at da
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where the differential equation for recovered individuals (R) is redundant since the
total population N remains constant. The boundary conditions are

§5(0,t)=v=N/L, E©,t)=1(0,t) =0, (2)
where L is the average lifespan, and the initial conditions are
5(a,0) = Sp(a),  E(a,0) = Eg(a), I(a,0) = Io(a). 3

For simulation, the easiest strategy is to set the initial conditions (S,, E,, I,,) to their
nonseasonal equilibrium values, calculated from a time-independent A(a, t) = A'(a)
(see below), and to discard the transient dynamics until several generations of hosts
have passed through the system.

In these equations per capita death rate, disease incubation and infectious periods,
and gross birth rate are u(a), 1/ and 1/y, and v respectively. The model assumes a
constant population size, no disease-induced mortality, neither neonatal immunity
nor vaccination, and constant exponential distributions of lifespan and latent and

- infective periods. Other work has relaxed these assumptions in various contexts (May,
1986; Mclean & Anderson, 1988a, b; Grossman, 1980; Hoppensteadt, 1974; London
& Yorke, 1973), but they will not be discussed further here.
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The key parameter of the model is the force of infection A(a, t), which incorporates
all information about age structure and seasonal variations in transmission rates.
The general form of A is an integral over age of contact rate f times infectives.
Infectives of age a’ meet and transmit disease to susceptibles of age a at a rate
depending on the time of year:

Ma, t) = IL B(a, d, I (a') dd. 4)
0

In practice, individuals fall into C discrete age classes (c; ,..., cc), With a base contact
rate f;; o between susceptibles in class i and infectives in class j. Seasonal changes in
contact rate are governed by an annually periodic function f,.,,(¢) that ranges from
0 to 1, and by the age-dependent amplitudes f;; 5, expressed as differences between
minimum and maximum contact rates. The resulting expression for 2 is

c
Al = Z ((ﬁu.o + fieas(t) X Bija) X J

I(a) da') , (5)
J=1 ‘ecy

Numerical solutions This seasonal, age-structured model, while general, is intrac-
table analytically. Epidemiologists, with an important exception (Schenzle, 1984: see
below), generally simplify the model by ignoring seasonality; this omission allows
them to estimate the equilibrium parameters from data. Dynamicists, on the other
hand, tend to ignore age structure, which would clutter their simple nonlinear models.
In practice, numerical simulations can retain the mechanisms of seasonality, age
structure, and their interaction, and draw novel conclusions. These models show that
seasonality is epidemiologically important, affecting persistence; that age structure is
dynamically important, inhibiting chaos; and that the interaction of seasonality and
age structure causes surprising changes in model dynamics.

In practice the age-structured models integrate discrete approximations of the
PDEs; the analogous system of age-independent equations uses ODEs. A particular
variant suggested by Schenzle (1984) uses ‘coarse-grained’ PDEs: that is, instead of
attempting to use age compartments sufficiently small to approximate a differential
age class da, it uses one-year age compartments Aa reflecting the annual cohort
structure of schools.

3.2 Sinusoidally forced SEIR model

The model structure given above is sufficiently flexible to incorporate simple models.
The familiar seasonally driven SEIR model used in many analyses of measles
dynamics can be written as a special, single-age-class, case of the general model, as
follows:

ﬁij.mla =b, (=ﬁo(1 = ﬂ;)» (6)
ﬁu.a =b, (=2ﬁoﬁ1)- (7

The parameters are also given in brackets in terms of the more familiar model
formulation where f, represents the average contact rate and f, is the proportional
amplitude of seasonal change in contact rate. The seasonal forcing and mortality
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patterns are
Seas(t) = 3(1 + cos 2t) (8)

ua) = y'. 9

Large values of b,, the annual swing in contact rate, generate extremely rich dy-
namical structures (Fig. 1a). These structures, among them bifurcation routes to chaos,
fractal domain boundaries, and chaotic repellors, and their possible relevance for
forecasting and control of epidemics, have been extensively discussed in the literature
(Sugihara et al.,, 1990; Schaffer et al., 1993; Schaffer & Kot, 1985; Schwartz, 1985;
Schwartz & Smith, 1983; Rand & Wilson, 1991) and will not be covered further here.
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FiG. 1. Output of sinusoidally forced SEIR and realistic age-structured (RAS) models: bifurcation
diagrams (a, d) and numbers of infectives over time (b, c, e). Bifurcation diagrams show Poincaré sections
of log, o (infectives) in a population of 50 million, sampled annually at the beginning of the epidemiologic
year (September, near the minimum number of infectives) for 100 ycars after a 200-year transient, for
given values of seasonal forcing amplitude. (a) Sinusoidal SEIR bifurcation diagram, log,, (infectives) vs.
b, (parameters N = 5 x 107, p =0.02, ¢ = 45.6,7 = 73.0, by = 1.5 x 107%, b, = 0 t0 9.0 x 1073, all units
year~! except contact rate (year™! infective™!)). (b) SEIR infectives vs. time for the biennial regime,
b, = 8.5 x 1075, (c) SEIR infectives vs. time for the chaotic regime, b, = 2.0 x 107 (d) Bifurcation
diagram for the RAS model as described above. Parameters as given by Schenzle (1984): N =5 x 107,
1t = 0.018, birth rate = 666666, y = 73.0, ¢ = 45.6 (year™!). Contact rates adjusted to give best least-
squares fit to the England and Wales data (Fig. 2e): b, = 8.76x 1075,b, = 0t0 5x 1074, b, = 2.74 x 107,
b, = 4.38 x 10~ (year ! infective ~!)). Triangular points at large amplitudes indicate a coexisting dynami-
cal domain in phase space. (€) RAS infectives vs. time and weekly case reports for contact rate parameters
(b, =8.76x 1075, b, = 1.25 x 10™%) giving best least-squares fit to case reporting data for England and
Wales. The means + one standard deviation for the (corrected) (Fine & Clarkson, 1982) weekly case
reports from England and Wales, 1950-1964, are superimposed on one biennium of model output.
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3.3 Age-structured models: realistic age-structured (RAS) model

At the other end of the spectrum of complexity, the general model can accommodate
quite detailed models. Researchers have thoroughly explored nonseasonal, age-
structured (B;;,» = 0) models, examining among other topics the impact of different
age structures on eradication thresholds and optimal vaccination strategies. Schenzle,
however, has contributed the only known seasonal age-structured model. The baseline
age-structure matrix is

by+by+b, b +by+b, by+b, b,

by +by+b, by+by+b, by+b, b,
B0 = : (10)
b3 —+ b4 b3 + b4 b3 + b4 b4.

by b, b, b,

with (¢, =(0<a<6),c,=(6<a<10),¢c; = (10 < a < 20),c, = (a = 20)), reflec-
ting the general observation that force of infection is highest among pre- and
primary-school children (Grenfell & Anderson, 1985).

The seasonal pattern reflects the observations that seasonal changes in contact
rate are closely linked to school calendars (Fine & Clarkson, 1982), and that primary
school children experience a sharp rise in force of infection:

0 0 00O
P 0 b, 0 0 (11
“*“1o 0 0 o)
0 0 0O
0 vacation
t) = ’ 12
Jreas®) {1 school term. 2

The structure of the parameters in the § matrices makes it possible to estimate the
parameters b; — b, from serological or age-structured case reporting data; in general
data show b, > b, > b; > b, (Grenfell & Anderson, 1985). We make the approxi-
mation that f_,, = 1, following Schenzle (1984); in practice f,.,, should be set to a
constant value reflecting the fraction of time primary children spend in school (=:2/3)
(Garnett, 1990), but in any case we usually use the estimated b values as a starting
point for least-squares fits of the aggregate number of infectives over time to case
reports from England and Wales.

Finally, the mortality structure approximates that of developed countries (May,
1986):

_fo (@<20),
ua)= {;ﬁ (@ > 20). =

As noted above, the PDEs are coarsely grained so that children move through the
system in annual cohorts to simulate the movement of school classes. The RAS model
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provides a better fit to the observed pattern of case reports in England and Wales
than does the SEIR model (compare Fig. 1b,c and Fig. le).

4. Numerical survey
4.1 Qualitative global dynamics: models

The surprising feature of Schenzle’s RAS model is that—in contrast to the sinusoidal
SEIR model (Fig. la)—its biological complexity suppresses deterministic chaos,
leading to biennial or at most 4-year cyclic patterns for a wide range of primary-
school contact rates (Fig. 1d), and for realistic ranges of pre-school contact rates.

Unfortunately, the RAS model has two major structural differences from the SEIR
model—seasonality and age structure—making it hard to specify which change is
making the difference in dynamics. The general model framework stated above allows
us systematically to disentangle the differences between the structure and dynamics
of the sinusoidal SEIR and RAS models. On the one hand, the SEIR model has a
sinusoidal forcing component ( f;.,, =f sin 2nt), homogeneous mixing (C = 1), and
chaos; on the other, the RAS model has a realistic, binary forcing term (f,.,, =0
or 1), age structure (C = 4), and no chaos. A comparative survey of measles models
intermediate between the RAS and SEIR models in terms of both age structure and
seasonal forcing shows that, within this family of models, both realistic seasonal
forcing and age structure are necessary to suppress chaos (Fig. 2).

As noted above, the models use ODEs in homogeneous (C = 1) models and
PDE:s in age-structured (C > 1) models. The comparative study uses fine-grained
(da = 2.3 days) instead of coarse-grained (da = 1 year) PDEs to avoid the confounding
effect of discrete cohort advancement in the RAS model. The annual shocks of cohort
advancement make the dynamics of the RAS model more (Fig. 1d), rather than less
(Fig. 2d), complicated. Age structure varies by the number of age classes (C = 1, 2,4),
preserving as much as possible the basic structure of high, seasonally varying contact
rates in one group surrounded by low, constant contact rates in all other groups.
The B matrices for the two-age-class case are

_[b, b o o
o[ 4] ma=[2 0] ”

¢, =(0 < a<6), c; =(a> 6); those for the one- and four-age-class models are as
given above for the RAS and SEIR models.

The pattern of seasonal forcing varies from a simple sine wave, as given for the
SEIR model; to a more realistic but still basically sinusoidal pattern fitting the annual
pattern in seasonality estimated from New York City data,

2.02 + 1.5cos 2nt
t) = 271739 —1.04 15
foeas®) . ( 1.5 + cos 2t ) (15
(modified from Kot et al., 1988); to a simple binary pattern
0 if182< (365 x (¢t —[t])) < 268,
Fros®) = { < (365 x (¢~ [)) 16)
1 otherwise,
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FiG. 2. Bifurcation diagrams of the family of deterministic models. Individual plots show Poincaré sections
of log,q (fraction infective) near the epidemic minimum for different values of the seasonal forcing
parameter, as described in Fig. 1. The models are arranged by complexity of age structure and seasonal
forcing pattern. The horizontal axis shows increasing complexity in seasonal forcing pattern f,.,,, as given
in equations (8), (15), (16), (12) respectively; the vertical axis shows increasing complexity in age-structure
matrices f, as given in equations (6, 7), (14), (10, 11). Figure 2i represents the sinusoidal SEIR model and
Fig. 2d a version of the RAS model without discrete cohorts. The horizontal line in each sub-figure indicates
a fractional level of one infective per 50 million population, the lower limit of a real system or discrete
stochastic model in a population the size of England and Wales.

where [¢] is the largest integer less than or equal to t—giving the same number
of vacation days as the RAS calendar in one continuous “vacation’ in the middle
of the year; to the realistic school-term pattern used in the RAS model, given by
Schenzle (1984).

4.2  Qualitative global dynamics: results

Figure 2 shows the results of numerical simulations of the family of models discussed
above, showing the effects of varying the degree of biological complexity in terms of
either age structure or the seasonal pattern of changes in contact rate. The parameters
are chosen from the literature in a way that attempts to make different models as
comparable as possible. The figure shows the qualitative global dynamics for each
model—that is, whether the numerical solutions show stability, periodicity, or
chaos—over a wide range of seasonal forcing amplitude, the parameter that generates
a bifurcation route to chaos in the sinusoidal SEIR model (Fig. 1a).

Bifurcation diagrams show the Poincaré section of the logged fraction of infectives
in the population against the amplitude of seasonal forcing, indicating the periodicity
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for each parameter value. Barring a complete exploration of the parameter and phase
space of each model, which would be both computationally and graphically difficult,
a broad survey of seasonal forcing over several orders of magnitude should give a
reasonable estimate of whether chaos is part of the repertoire of dynamical behaviour
of a model. For example, in the sinusoidally forced SEIR model, transient chaos in
asymptotically stable parameter regimes is caused by the ‘ghost’ of chaotic structures
present in other parameter regimes (Rand & Wilson, 1991).

Bifurcation diagrams do not necessarily show the entire range of dynamics for a
particular model (Holden, 1986). Parameters other than seasonal forcing do affect the
dynamics in independent ways, particularly b,, the baseline child contact rate, in the
RAS model. Also, multiple domains are possible in phase space (Schwartz 1985); that
is, different starting values (S,, E,, I,) may lead to different long-term model dynamics
in certain cases (Fig. 1d). Nevertheless, the bifurcation diagram gives a good general
synopsis of the comparative degree of irregularity and chaos in the dynamics of a
particular model.

Dynamical complexity and model structure The simulations show (Fig. 2) that
dynamical complexity increases with decreasing age structure (Fig. 2d, h, 1) and with
decreasing complexity of seasonal forcing pattern (Fig. 2d, c, b, a). A homogeneous
model incorporating the seasonal pattern of effective contact rates generated by the
RAS model can generate chaos (Fig. 21); so can an age-structured model with simple
sinusoidal forcing (Fig. 2a). The main criteria for suppressing chaos in this family
appear to be some degree of age structure and some seasonal pattern more complex
than a simple sinusoid (Fig. 2b, ¢, d, f, g, h). (Note that f,_,, for the homogeneous,
binary model is not a true binary function; rather, it is the effective contact rate
generated by the RAS model. This variant was used for closer analogy with the
RAS model structure, and its dynamics resemble those of a homogeneous model with
true binary seasonality.)

Dynamical complexity and trough minima Figure 2 also shows that dynamical
complexity is inversely correlated with minimum numbers of infectives in the epidemic
cycle: the Poincaré sections are taken at the beginning of the epidemiologic year
(Anderson, 1982), near the annual minimum. The sub-figures are all on the same
scale; the height of the solid horizontal line in each sub-figure corresponds to one
infective in a population of 50 million, comparable to England and Wales. At the
extremes, the SEIR model falls as low as one infective per 10'7, an obviously
unrealistic level, while the PDE RAS model only falls to one in 10*, With fewer than
one infective in the population, measles will fail to persist; stochastic fluctuations in
the infection process mean measles will sometimes fade out even with larger average
numbers of infectives. Measles apparently persists in large populations (Black, 1966;
Bartlett, 1957, 1960), and so deterministic models with extremely low epidemic
troughs are unrealistic in a critically important way (Grenfell, 1992). Dynamical
complexity appears primarily in members of the model family whose trough minima
fall below a realistic level (Fig. 2a, e, 1, j, k, 1).

Chaos in the SEIR model is associated with the deep troughs between epidemics
(Drepper, 1988); adding a large enough immigration of infectives suppresses chaos in
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the SEIR model. Berryman & Millstein (1989) suggest that large-amplitude fluctu-
ations around an equilibrium, causing large, overcompensating density-dependent
growth rates, commonly—although not always (Nisbet et al., 1989)—generate chaos.
This mechanism appears to drive chaotic dynamics in measles models, and preventing
low minima (and hence large growth rates) appears to short-circuit chaos. Thus the
absence of chaos in the RAS model probably comes about because pre-school
children are shielded from the full force of epidemics, and so provide a trickle of
infectives that prevents low minima. The role of complex seasonality is not yet
clear—it may break up epidemics more effectively than sinusoidal seasonality, and
thus prevent them from completely exhausting the number of susceptibles. The minor
epidemic in the RAS biennial regime ends because vacation disperses children rather
than because the supply of susceptibles is exhausted (Schenzle, 1984), and binary
seasonality may contribute to this effect.

5. Discussion and Conclusions

The general model presented here is a unifying strategy for looking at a variety of
measles models that generates a range of dynamics from simple to complex. The
numerical survey of dynamics within this family shows convincingly that, in this
family of epidemiological models, model complexity, trough minima, and dynamic
simplicity are correlated. This correlation proves no causal links, but simple
epidemiological and dynamical arguments suggest that biological heterogeneities
cause a buffering effect that prevents unrealistically low interepidemic troughs and
thus damps out chaotic dynamics in the models.

This framework offers one possibility for unifying the irregular and possibly chaotic
measles epidemics of Copenhagen and New York City (Sugihara & May, 1990;
Schaffer & Kot, 1985; Olsen et al., 1988; Olsen & Schaffer, 1990; Sugihara et al., 1990;
May et al., 1992; Drepper, 1988; Stollenwerk & Drepper, 1993; Nychka et al., 1992;
Casdagli, 1992) and the regular biennial epidemics of England and Wales within a
single framework by varying the type of age structure and seasonal pattern. Plausible
local differences in school calendar, age at school attendance, and mixing between
pre-school and primary-school children could generate differences in seasonal
patterns and age structure that qualitatively change epidemic dynamics. While this
explanation is more general than simply assuming that dynamics vary from place to
place because of differences in seasonal amplitude, many unanswered questions
remain about the dynamics of measles models, particularly about the effects of
population size and geographic and social coupling between different populations.

The importance of trough minima points to the importance of population size in
measles dynamics. Preliminary results from discrete stochastic analogues (Murray &
Cliff, 1975; Olson et al., 1988) of the RAS and SEIR models suggest an important
dynamical effect of population size. Although most of the dynamical differences
between the SEIR and RAS models carry over from deterministic to simple stochastic
models, different-size populations generate different dynamics in the Monte Carlo
RAS model: at large (N = 5 x 107) population sizes, the RAS model approximates
its deterministic analogue and generates a fairly stable biennial pattern, while at
smaller population sizes (N = 10°), it generates episodic dynamics alternating
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between an irregular, fadeout-dominated triennial pattern and a more predictable
biennial pattern (Bolker & Grenfell, 1993). These distinct dynamical domains also
appear in the stochastic SEIR and in the deterministic SEIR model, where they
correspond to different regions of the complex underlying deterministic (chaotic)
attractor structure (Schaffer et al., 1993).

These results are discussed elsewhere (Bolker & Grenfell, 1993); the main con-
clusion from the current study is that detailed consideration of social and biological
complexities is vital. Particular patterns of heterogeneity in seasonal and age structure
can have profound effects on the dynamics of epidemiological models, and complex
models should not be dismissed in favour of simpler ones without first exploring their
dynamical behaviour.
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