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Generalized Additive Models
Trevor Hastie and Robert Tibshirani

Abstract. Likelihood-based regression models such as the normal linear
regression model and the linear logistic model, assume a linear (or some
other parametric) form for the covariates Xlt X2, ■•-, Xp. We introduce
the class of generalized additive models which replaces the linear form
2 (IjXj by a sum of smooth functions _£ $j(Xj). The Sj(-)'s are unspecified
functions that are estimated using a scatterplot smoother, in an iterative
procedure we call the local scoring algorithm. The technique is applicable to
any likelihood-based regression model: the class of generalized linear models
contains many of these. In this class the linear predictor tj = £ fyXj is
replaced by the additive predictor £ Sj(Xj); hence, the name generalized
additive models. We illustrate the technique with binary response and
survival data. In both cases, the method proves to be useful in uncovering
nonlinear covariate effects. It has the advantage of being completely auto
matic, i.e., no "detective work" is needed on the part of the statistician. As
a theoretical underpinning, the technique is viewed as an empirical method
of maximizing the expected log likelihood, or equivalently, of minimizing the
Kullback-Leibler distance to the true model.

Key words and phrases: Generalized linear models, smoothing, nonpara-
metric regression, partial residuals, nonlinearity.

1. INTRODUCTION

Likelihood-based regression models are important
tools in data analysis. A typical scenario is the follow
ing. A likelihood is assumed for a response variable Y,
and the mean or some other parameter is modeled as
a linear function 2? PjXj of a set of covariates Xu X2,
•••, Xp. The parameters of the linear function are
then estimated by maximum likelihood. Examples of
this are the normal linear regression model, the logis
tic regression model for binary data, and Cox's pro
portional hazards model for survival data. These
models all assume a linear (or some parametric) form
for the covariate effects.

A trend in the past few years has been to move away
from linear functions and model the dependence of Y
on Xi, X2, • • ■, Xp in a more nonparametric fashion.
For a single covariate, such a model would be Y =
s(X) + error where s(X) is an unspecified smooth
function. This function can be estimated by any so-
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called scatterplot smoother, for example a running
mean, running median, running least squares line,
kernel estimate, or a spline (see Reinsch (1967),
Wahba and Wold (1975), Cleveland (1979), and Sil
verman (1985) for discussions of smoothing tech
niques). For the p covariates X = (X_, X2, • ■ -, Xp),
one can use a p -dimensional scatterplot smoother to
estimate s(X), or else assume a less general model
such as the additive model s(X) = ££ Sj(Xj) and
estimate it in an iterative manner.

In this paper we propose a class of models that
extends the usual collection of likelihood-based regres
sion models and a method for its estimation. This new

. class replaces the linear function £? fijXj by an addi
tive function 2)? Sj(Xj); we call it the class of general
ized additive models. The technique for estimating the
Sj( • )'s, called the local scoring algorithm, uses scatter
plot smoothers to generalize the usual Fisher scoring
procedure for computing maximum likelihood esti
mates. For example, the linear logistic model for
binary data specifies log[p(X)/(l - p(X))] = /30 +
faXx + ■■■ + PpXp, where p(X) = Prob(Y = 11 X).
This is generalized to log[p(X)/(l - p(X))] =
Y,i Sj(Xj), and the local scoring procedure provides
nonparametric, smooth estimates of the &/(•)'& The
smooth functions produced by the local scoring pro
cedure can be used as a data description, for predic
tion, or to suggest covariate transformations. One can
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allow a smooth estimate for all of the covariates or
force a linear fit for some of them. Such a semipara-
metric model would naturally arise if categorical cov
ariates were present, but would also be useful if, for
reasons specific to the data at hand, a linear fit was
desired for certain covariates.

The Gaussian and logistic models are members of
the class of generalized linear models (GLM) (Nelder
and Wedderburn, 1972). This comprehensive class
restricts Y to be in the exponential family (with an
unspecified scale parameter); the statistical package
GLIM (generalized linear interactive modeling) per
forms estimation and diagnostic checking for these
models. Generalized additive models extend GLM by
replacing the linear predictor 77 = 2? PjXj with an
additive predictor of the form 77 = 2? sj(Xj). The third
example, the proportional hazards model mentioned
earlier, is not in the exponential family, and the like
lihood it uses is not in fact a true likelihood at all.
Nevertheless, we still think of it as a "likelihood-
based" regression model and the techniques can
be applied. The usual form for the relative risk
exP(___? PjXj) is replaced by the more general form
expffl sj(Xj)).

The local scoring procedure is similar to another
method for estimating generalized additive models,
local likelihood estimation (Hastie, 1984a; Tibshirani,
1984, and references therein). In this paper we com
pare the two techniques in some examples and find
that the estimated functions are very similar. The
advantage of the local scoring method is that it is
considerably faster.

Generalized additive models provide one way to
extend the additive model E(Y\X) = £? Sj(Xj). At
least two other extensions have been proposed. Fried
man and Stuetzle (1981) introduced the projection
pursuit regression model E( Y\ X) = _£? Sj(ajX). The
direction vectors a, are found by a numerical search,
while the s/( • )'s are estimated by smoothers. The ACE
(alternating conditional expectation) model of Brei-
man and Friedman (1985) generalizes the additive
model by estimating a transformation of the response:
E(6(Y) IX) = X? Sj(Xj). Breiman and Friedman dis
cuss other extensions in their article.

This, paper is nontechnical for the most part, with
an emphasis on the techniques and their illustration
through examples. In Section 2, we review the linear
regression model and its generalization (the additive
model). Section 3 reviews generalized linear models.
In Section 4, we link smoothing and generalized linear
models to produce a more general model. The two
techniques for estimation are introduced and illus
trated.

In Section 5, we present a unified framework in
which to view the estimation procedures, and a general
form of local scoring applicable to any likelihood-

based regression model. Section 6 contains examples
of the procedures, including the logistic model and
Cox's model for censored data. In Section 7 we discuss
multiple covariate models and backfitting procedures.
Section 8 compares the local scoring and local like
lihood procedures, and finally in Section 9 we discuss
extensions of the models and related work.

2. THE LINEAR REGRESSION MODEL AND ITS
SMOOTH EXTENSION

Our discussion will center on a response random
variable Y, and a set of predictor random variables
X_, X2, •••, Xp. A set of n independent realiza
tions of these random variables will be denoted by
(yu xUt • ♦ •, xlp), •.., (yB, xni, •. -, xnp). When working
with a single predictor (p = 1), we'll denote it by X
and its realizations by xx, x2, • • •, xn.

A regression procedure can be viewed as a method
for estimating E(Y\XU X2, • • •, Xp). The standard
linear regression model assumes a simple form for this
conditional expectation:

(1) E(Y\XUX2, ...,XP)
= Po + ftX, + • • • + (3pXp.

Given a sample, estimates of 0O, fa, • • • , £p are usually
obtained by least squares.

The additive model generalizes the linear regression
model. In place of (1), we assume

(2) E(Y\XUX2, ...,Xp) = so+ Zsj(Xj),
.'=1

where the s/(-)'s are smooth functions standardized
so that Esj(Xj) = 0. These functions are estimated
one at a time, in a forward stepwise manner. Estima
tion of each Sj(-) is achieved through a scatterplot
smoother.

2.1 Scatterplot Smoothers
Let's look first at the case of a single predictor. Our

model is

(3) E(Y\X) = s(X).
(If there is only one smooth function, we suppress the
constant term s0 and absorb it into the function.) To
estimate s(x) from data, we can use any reasonable
estimate of E( Y\ X = x). One class of estimates are
the local average estimates:

( 4 ) s ( x i ) = A v e j ( = N . \ y j \ ,
where Ave represents some averaging operator like
the mean and iV. is a neighborhood of xt (a set of
indices of points whose x values are close to x,-). The
only type of neighborhoods we'll consider in this paper
are symmetric nearest neighborhoods. Associated with
a neighborhood is the span or window size w; this is



GENERALIZED ADDITIVE MODELS 299

the proportion of the total points contained in each
neighborhood. Let [x] represent the integer part of x
and assume that [wn] is odd. Then a span w symmetric
nearest neighborhood will contain [wn] points: the ith
point plus ([wn] — l)/2 points on either side of the
ith point. Assuming that the data points are sorted by
increasing x value, "a formal definition is:

(5)
Ni = i maxj i - [wn\ * , 1), ...,/- l, i,

. (. , [wn] - 1i + l, ••■, min(i + -—*- , n)>.

We see that the neighborhoods are truncated near the
end points if ([wn] — l)/2 points are not available.
The span w controls the smoothness of the resulting
estimate, and is usually chosen in some way from the
data.

If Ave stands for arithmetic mean, then s(-) is the
running mean, a very simple scatterplot smoother.
The running mean is not a satisfactory smoother
because it creates large biases at the end points and
doesn't generally reproduce straight lines (i.e., if the
data lie exactly along a straight line, the smooth of
the data will not be a straight line). A slight refinement
of the running average, the running lines smoother
alleviates these problems. The running lines estimate
is defined by

(6) S(Xi) = fa + fiuXi,

where /?0. and pu are the least squares estimates for
the data points in Nfi

(7)
s _ _£;av. (Xj ~ Xi)yj

HjeN, (Xj — Xi)
%i = y. - PuXi,

and Xi = (l/n) Y,jeN, Xj, Si = i\/n) _>.>e/v, y/. An estimate
of s(a) for a not equal to one of the x,'s can be obtained
by interpolation.

The running lines smoother is the most obvious
generalization of the least squares line. If w = 2 (that

.is every neighborhood contains all the data points),
the smooth agrees exactly with least squares regres
sion line (note that with w = 1 a neighborhood at the
end points would only contain about half of the data
points). Although very simple in nature, the running
lines smoother produces reasonable results and has
the advantage that the estimate in a neighborhood
can be found by updating the estimate of the previous
neighborhood. As a result, a running lines smoother
can be implemented in an O(n) algorithm (an algo
rithm having number of computations proportional to
n), a fact that will become important when we use it
as a primitive in other procedures. For the rest of this

paper, a "smooth[ • ]" operation will refer to a running
lines smoother for some fixed span.

It is important to note, however, that the running
lines smoother plays no special role in the algorithms
that are described in this paper. Other estimates of
E(Y\X) could be used, such as a kernel or spline
smoother. Except for the increased computational
cost, these smoothers could be expected to work as
well or better than the running lines smoother.

Finally, using smooth as a building block, the full
model (2) can be estimated in a forward stepwise
manner. This is discussed in Section 7.

2.2 Span Selection and the Bias-Variance Tradeoff

The running lines smoother requires a choice of
span size w. Let's look at the extreme choices first.
When w = l/n, s(x.) is just y*. This is not a good
estimate because it has a high variance and is not
smooth. If w = 2, s(-) is the global least squares
regression line. This estimate is too smooth and will
not pick up curvature in the underlying function, i.e.,
it might be biased. Hence, the span size should be
chosen between l/n and 2 to tradeoff the bias and
variability of the estimate.

A data-based criterion can be derived for this pur
pose if we consider the estimates of E( Y\ X) as em
pirical minimizers of the (integrated) prediction
squared error (PSE)

(8) PSE = E(Y - s(X))*

or equivalently the integrated mean squared error
(MSE)

(9) MSE = E(E(Y\X) - s(X))2.

Let Sw'(xi) be the running lines smooth of span w, at
xi, having removed (*,, y>) from the sample. Then the
cross-validation sum of squares (CVSS) is defined by

(10) CVSS(w) = (l/n) | (y. - sZ'ixt))2.

One can show that E(CVSS(w)) is approximately
PSE, using the fact that Su(xi) is independent of y,-.
Thus it is reasonable to choose the span w that pro
duces the smallest value of CVSS(iu). This criterion
effectively weighs bias and variance based on the
sample. Cross-validation for span selection is
discussed in Friedman and Stuetzle (1982). Note
that if we used the observed residual error RSS =
(1/") Ei (y. - s„(xi))2 to choose w, (sw(xi) being the
fit at Xi with span w) we would get w = l/n and hence
s(xi) = y,-. Not surprisingly, residual sum of squares
(RSS) is not a good estimate of PSE. The point is
that by choosing the span to minimize an estimate of
expected squared error, we get a useful estimate.
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3. A REVIEW OF GENERALIZED LINEAR
MODELS (GLMs)

Generalized linear models (Nelder and Wedderburn,
1972) consist of a random component, a systematic
component, and a link function linking the two com
ponents. The response Y is assumed to have exponen
tial family density

(11) fY(y; 6; 0) = expf* ~ *(g) + c(y, <t>)
[ a(<t>)

where 0 is called the natural parameter and 0 is the
scale parameter. This is the random component of the
model. We also assume that the expectation of Y,
denoted by n, is related to the set of covariates X_,
X2, ■ ■ •, Xp by g(n) = 77, where tj = 0O + ft-X. + • • • +
PpXp. tj is the systematic component and g(-) is the
link function. Note that the mean \i is related to the
natural parameter 6 by fi = b'(0); also, the most
commonly used link for a given /is called the canonical
link, for which 77 = 0. It is customary, however, to
define the model in terms of n and 77 = g(fi) and thus
6 does not play a role. Hence, when convenient we'll
write fY(y, 6, 0) as/y(y, n, <t>).

Estimation of n won't involve the scale parameter
0, so for simplicity this will be assumed known.

Given specific choices for the random and sys
tematic components, a link function, and a set of n
observations, the^ maximum likelihood estimate of
/3 = (/Jo, pi, • ••, /3P) can be found by a Fisher scoring
procedure. GLIM uses an equivalent algorithm called
adjusted dependent variable regression. Given 7} (a
current estimate of the linear predictor), with corre
sponding fitted value /x, we form the adjusted depend
ent variable

(12) z -1. + (v - ai*

Define weights W by

(13) (uo-1 HgJ v,dv

where V is the variance of Y at /* = fi. The algorithm
proceeds by regressing 2 on 1, x_, • • •, xp with weights
W to obtain an estimate /?. Using 0, a new £ and 77 are
computed. A new z is computed and the process is
repeated, until the change in the deviance
(14) dev(y, A) = 2[l(y) - 1(h)]
is sufficiently small. In the above, /(/_) is the log
likelihood £ log/yCy,-, P-u$)> Nelder and Wedderburn
show that the adjusted dependent variable algorithm
is equivalent to the Fisher scoring procedure, that is
the sequence of estimates is identical. It is attractive
because no special optimization software is required,
just a subroutine that computes weighted least squares

estimates. Green (1984) gives an excellent discussion
of iteratively reweighted least squares methods for
maximum likelihood estimation.

A comprehensive description of generalized linear
models is given by McCullagh and Nelder (1983).

4. SMOOTH EXTENSIONS OF GENERALIZED
LINEAR MODELS

4.1 Specification of the Model
The linear predictor r} = /30 + PiXx + • • • + fipXp

specifies that Xx, X2, • • -, Xp act in a linear fashion.
A more general model is

(15) V - So + 2 Sj(Xj),

where sx(-), ••• , sp(-) are smooth functions. These
functions will not be given a parametric form but
instead will be estimated in a nonparametric fashion.

4.2 Estimation of the Model—Local Scoring

We require an estimate of the s;(-)'s in (15). For
the linear model 77 = /5"0 + /?iXi + • • • + ppXp, the
estimates were found by repeatedly regressing the
adjusted dependent variable 2 on 1, Xx, • • -,XP. Since
smoothing generalizes linear regression, in the smooth
model 77 = s(X), we can estimate s(-) by repeatedly
smoothing the adjusted dependent variable on X. We
call this procedure local scoring because the Fisher
scoring update is computed using a local estimate of
the score. This intuitive idea can be justified on firm
grounds (see Section 5). For the full model (15), the
smooths can be estimated one at a time in an iterative
fashion. This idea is discussed in detail in Section 7.

In Figure 1 (Section 6) we display the results of
local scoring smoothing (solid curve), exp(s(x))/(l +
exp(s(x))), along with the usual linear estimate (al
most straight curve) exp(f30 + &x)/(l + exp(/30 + /§ix)),
for some binary response data. This is one of the
smooths from the analysis of Haberman's breast can
cer data discussed in detail in Sections 6 and 7.

This procedure requires a choice of span. In the
Gaussian or ordinary additive regression models we
use the CVSS (10) t6 guide us in selecting spans.
CVSS is approximately unbiased for the expected
prediction squared error, whereas RSS is not and
would lead us to pick spans of l/n. In the exponential
family, the deviance is the analogue of RSS. It is a
sample estimate of the expected Kullback-Leibler dis
tance between a model and future observations. Just
like the RSS it will be biased for this quantity. For
span selection, one can think of cross-validating the
deviance in order to get an approximately unbiased
estimate for the Kullback-Leibler distance. This
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however would be very expensive due to the nonlinear
nature of the estimation procedure. In ordinary addi
tive regression, simple deletion formula allow one to
calculate cross-validated fits in 0(n) computations. In
the local scoring algorithm, however, the entire esti
mation procedure would have to be repeated n times,
and so cross-validation would be very expensive.

Instead, we find the span at each iteration by cross-
validation as described in Section 2. Recall that
E(CVSS(w)) » PSE for a scatterplot smoother; the
derivation of this rests on the fact that the fitted value
Sw'(Xi) does not involve y,-, and thus is independent of
y,-. In this setting, the response is the adjusted depend
ent variable z, which is a function of y,-. The cross-
validated fit for 2, is a function of Zj, j ^ i. Since Zj is
a function of yt from previous iterations, 2, is not
independent of its cross-validated fit. However, if kn
is the number of points in the neighborhood, then one
can show that under reasonable conditions the corre
lation is only 0(l/kn).

To obtain smoother estimates, we use a slight mod
ification of this criterion. We choose a larger span
than the cross-validatory choice if it produces less
than a 1% increase in CVSS(w).

4.3 Estimation of the Model—Local Likelihood
Hastie (1984a) and Tibshirani (1984) discuss an

other method for estimating smooth covariate func
tions called local likelihood estimation. For a single
covariate, the usual (linear) procedure fits a line across
the entire range of X, i.e., 77 = p0 + p\X To estimate
the model 77 = s(X), the local likelihood procedure
generalizes this by assuming that locally s(x) is linear
and fits a line in a neighborhood around each X value.
In the exponential family with canonical link, the
local likelihood estimate of s(x,-) is defined as

(16) s(xi) = /30l- + PiiXi,
where £0l- and /§_, maximize the local log likelihood

+ c(yj, 0)(17) log u = 1 m - »w
j & t , [ a w )

and Oij = /J0_ + /3.,-x,-. The local likelihood smooth
applied to the Haberman data is shown in Figure 1
(dotted line). They are very similar, a fact that seems
to be a general phenomenon. We discuss the relation
ship between the two procedures in Section 8.

Local scoring and local likelihood estimation pro
vide two methods for estimating the covariate func
tions of a generalized linear model. In the next section,
we introduce a theoretical framework in which to view
both of these techniques. Besides providing a justifi
cation for the methods, this framework also produces
a general form of local scoring that can be used in any
likelihood-based regression model.

5. JUSTIFICATION OF THE SMOOTHING
PROCEDURES

5.1 The Expected Log Likelihood Criterion
In Section 2 we discussed scatterplot smoothers as

estimates of E( Y \ X). There we saw that by choosing
the span to minimize an estimate of expected squared
error (as opposed to residual sum of squares), we
obtained a useful estimate. In this section, we will use
this idea in a likelihood setting, basing the estimation
procedures on expected log likelihood.

Consider a likelihood-based regression model with
one covariate. We assume that the data pairs (x_, y_),
• • -, (xn, yn) are independent realizations of random
variables X and Y. Assume also that given X = x, Y
has conditional density h(y, 77). Since 77 is a function
of x, we will sometimes write 77 (x) for emphasis. De
note the corresponding log likelihood for a single
observation by l(rj, Y) or I for short. Now to estimate
tj(-), we could simply maximize £" l(r](xi), y{) over
Mxi), J?(x2), • • •, 77(x„)}. This is unsatisfactory, how
ever, because it doesn't force the estimate to be
smooth. In the logistic model, for example, it produces
77(x,) = +00 if y, = 1 and — °° if y{ = 0, and the estimated
probabilities are just the observed y/s. Looking back
at the scatterplot smoothing discussion, we see that a
remedy in the random variable case is to choose 77 (•)
to maximize the expected log likelihood:

(18) E(l(v(X), Y)) = max E(l(v(X), Y)),

the expectation being over the joint distribution of X
and Y. This has intuitive appeal since we are choosing
the model to maximize the likelihood of all possible
future observations.

In the exponential family the motivation is
strengthened if we use the Kullback-Leibler distance
as the generalization of squared error. This measures
the distance between densities; the distance between
a model with true parameter 77* and one with param
eter 77 is defined as K(ij*, 77) = EvJog h(Y, v*)/h(Y,
77). We regard this equivalently as a measure of
distance between the two parameters 77* and 77, or even
the associated means n* and /z. The following decom
positions, one for squared error, the other for
Kullback-Leibler distance, are easily derived:

(19)

E ( Y- n ( X ) ) 2
= E(Y- n*(X))2 + E(n*(X) - n(X))2,

EK(Y,n(X))
= EK(Y, n*(X)) + EK(n*(X), n(X)),

where fi*(X) is the true conditional mean. From (19)
we see that if we minimize the expected Kullback-
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Leibler distance from future observations EK(Y,
ii(X)), then we get the model fi(X) closest to ti*(X).
If n(x) is unrestricted, the minimum is achieved at
n(x) = n*(x). If the distribution is Gaussian, the
Kullback-Leibler distance becomes squared error
(times Vz). Since EK(Y, n(X)) = El(Y, Y) - El(Y, n),
we see that this is equivalent to maximizing the ex
pected log likelihood.

The use of expected log likelihood has also been
suggested by Brillinger (1977) and Owen (1983). In
what follows, we show that standard maximum like
lihood estimation for generalized linear models, local
scoring, and local likelihood estimation can all be
viewed as methods for empirically maximizing the
expected log likelihood.

5.2 Derivation of the Estimation Techniques Via
Expected Log Likelihood

One way to use (18) for estimation of 77 (x) would be
to assume a simple form for 77 (x), like 77(x) = /30 + 6xx.
We would then be finding the linear 77 (x) closest in
Kullback-Leibler distance to 77*(x). The expectation
in (18) could then be replaced by its sample analogue,
and the resultant expression maximized over /30 and
ft. This is nothing more than standard maximum
likelihood estimation.

Now suppose (as is the point of this paper) that we
don't want to assume a parametric form for 77 (x).
Differentiating (18) with respect to (the number) 77 we
get
(20) E(dl/dv\xhix) = 0,
assuming expectation and differentiation can be in
terchanged. Given some initial estimate tj(x), a first
order Taylor series expansion gives the improved
estimate

(21) v\x) = v(x) - E(dl/dv I x)/E(d2l/dv2 \ x)
or

(22) vl(x) = E ! ? ( * ) -
dl/drj

E(d2l/drj21 x)
This provides a recipe for estimating 77 (•) in practice.
Starting with some initial estimate 77 (x), a new esti
mate is obtained using formula (22), replacing the
conditional expectations by scatterplot smoothers.
The data algorithm analogue is thus

(23) V(x) = smooth v ( x )~ dl/dr,
smooth[d2//d772].

Since the variance of each of the terms in the brackets
is approximately « E(d2l/dij2), the smoother could use
weights oc smooth(d2i/d772)-1 for efficient estimation.

The data algorithm consists of repeated iterations of
(23), stopping when the deviance fails to change by a
small amount.

In the exponential family case, we can simplify (22)
before replacing E(- \x) by smooth. We compute
dl/dv = (y - n)V-Hdv/di,)t d2l/dV2 = (y - p).
(d/drj) [V-Hdn/dr,)] - (dfi/dn)*V-1, and

E((d2l/dV2)\x)= -(dn/dvfV'1.
Hence the update simplifies to

(24) nHx) = E[n(x) + (Y - M) (dv/dn) I x].
The data analogue is

(25) 77 l(x) = smoothMx) + (y - fi) (dv/dfi)]
with weights (dn/dr])2V~l. This is exactly a smooth of
the adjusted dependent variable, suggested on intui
tive grounds in Section 4.

Note that we chose the form (22) instead of (21). In
the case of distributions, they are the same because
conditional expectation is a projection operator. Most
smoothers are not projections and thus the two forms
are not equivalent in the data case. We chose (22)
because in the Gaussian case it simplifies to t)(x) =
smoothly] without any iteration, whereas (21) would
require iteration even in this simple case.

The local likelihood procedure can also be viewed
as an empirical method of maximizing El(rj(X), Y).
Instead of differentiating this expression (as above),
we write El(v(X), Y) = E(E(l(v(X), Y)\X = x)).
Hence it is sufficient to maximize E(l(rj(X), Y) | X =
x) for each x. The corresponding data recipe can be
derived as follows. Consider estimating 77 (x) at some
point x = Xi. An estimate of E(l(rj(X), Y) \ X = x.) is

(26) E(l(v(X),Y)\X=xi) = (l/kn) £ l(v(xj),yj),

where kn is the number of data points in _V,-. Assuming
77 (x) « /_oi + /3.,-x for points in _V,-, (26) is then maxi
mized over /?0l and /?_;. The resulting estimate, 7)(x.) =
/So; + puXh is the local likelihood estimate as defined
in Section 4.

The algorithms described here can be used in any
likelihood-based regression model. As a technical
point, note that in the exponential family, we linked
the additive predictor 77 = £? sj(Xj) to the distribution
of Y via 77 = g(n). In some nonexponential family
models, n is a complicated function of the model
parameters or may not exist at all. It would then be
desirable to link 77 to some other parameter of the
distribution. This is true in the Cox model (see the
next section). In any case, there is little difficulty—
however, 77 is linked to the distribution of Y, the
likelihood is some function of 77 and its derivatives are
used in the updating formula.
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To summarize so far, maximization of the expected
log likelihood has led to a general technique for esti
mating a smooth covariate function: the local scoring
procedure. In the case of the exponential family like
lihood this procedure corresponds to smoothing of the
adjusted dependent variable. Standard (linear) maxi
mum likelihood estimation and local likelihood esti
mation can also be viewed as empirical maximizers of
expected log likelihood. Equivalently they can all be
viewed as empirical minimizers of the expected
Kullback-Leibler distance between the model and the
estimate.

So far we have not addressed the problem of mul
tiple covariates—this will be done in Section 7.

6. SOME EXAMPLES

6.1. The Gaussian Model
For the Gaussian model with identity link, (25)

simplifies to ^(x) = smooth[y], and the local scoring
algorithm reduces to a running lines smooth of y and
x. The local likelihood procedure also gives the run
ning lines smooth of y on x, since the local maximum
likelihood estimate is 77(x,) = /?0, + fr.x,-, /30l and (3U
being the least squares estimates for the points in _V,.
The Gaussian model is applied to a large meterological
data set in Hastie and Tibshirani (1984).

6.2. The Linear Logistic Model
A binomial response model assumes that the pro

portion of successes Y is such that n(x)Y|x ~
Bin(n(x), p(x)), where Bin(n(x), p(x)) refers to the
binomial distribution with parameters n(x) and p(x).
Often the data is binary in which case n(x) = l. The
binomial distribution is'a member of the exponential
family with canonical link

g(p(x)) = log P(x)
(1 - P(x))

= T7(X).

In the linear logistic model we assume 77 (x) = /30 + &X,
and the parameters are estimated by maximum like
lihood using Fisher scoring or equivalently by using
adjusted dependent variable regression. The smooth
extension of this model generalizes the link relation
to log [p(x)/(l -p(x))] = 77(x). The local scoring step
is

(27) n\x) = smooth] 77(x) + * p{x] -
L p(x) ( l - p (x) )

with weights n(x)p(x)(l -p(x)). We now demonstrate
the procedure on some real data.

A study conducted between 1958 and 1970 at the
University of Chicago's Billings Hospital concerned
the survival of patients who had undergone surgery

for breast cancer (Haberman, 1976). There are 306
observations on four variables.

_ J1 if patient i survived 5 years or longer,
|0 otherwise,

xn = age of patient i at time of operation,

x,2 = year of operation i (minus 1900),

x,3 = number of positive axillary nodes detected
in patient i.

Figure 1 shows the response variable plotted against
the covariate age. The solid nonlinear function was
estimated using the local scoring method, with a span
of .6. Now for a single covariate one could simply
average the 0-1 response directly—this produced the
dashed curve in the figure. It is identical with the
function found using the local likelihood method fit
ting local constants to the logits. The local likelihood
smooth fitting local straight lines (the more usual
approach) is the dotted curve. The three nonparamet
ric estimates are all similar, with bias affecting the
running mean near the end points, and all give a
different qualitative description of the data than the
linear fit (almost straight curve). One can compare
the linear logistic fit to any of the smooth estimates
by examining the corresponding drops in deviance.
For example, the local scoring estimate produced a
deviance of 5.6 less than the linear logistic fit, while
using only 1.6 more degrees of freedom (see Section
9), and hence the linear logistic fit is not adequate for
these data.

Fig. 1. Survival of patients who underwent surgery versus age of
the patient. The local scoring function is the solid curve, the loca
likelihood function is dotted, the running mean of the y's is dashed,
and the linear logistic function is the almost straight curve. The area
of the circles is proportional to the number of observations.
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We will see in the Section 7 that in fitting multiple
covariate models, the approach of smoothing the re
sponse variable directly breaks down, whereas the
local scoring and local likelihood techniques generalize
easily. We will pursue this example in Section 7.

6.3. The Cox Model
The proportional hazards model of Cox (1972) is an

example of a nonexponential family regression model.
This model is used to relate a covariate to a possibly
censored survival time. The data available are of the
form (yu xu 5i), • • •, (y„, x„, 5„), the survival time y,
being complete if 8x = 1 and censored if 5, = 0. We
assume there are no ties in the survival times. The
proportional hazards model assumes the hazard rela
tion

(28) X(t\x) = \o(*)e*
The parameter fi can be estimated without specifica
tion of Xo(t) by choosing 0 to maximize the partial
likelihood (PL)

(29)

In the above, D is the set of indices of the failures
and Ri = \j | y, < y,} the risk set just before the failure
aty,.

A more general model is

( 3 0 ) \ ( t \ x ) = X 0 ( t ) e " i x )
where 77 (x) is a smooth function of x. One way to
estimate 77 (x) would be to apply the local scoring
formula (23). Letting / equal the log partial likelihood
and C, = \k: i E /?/,}, (the risk sets containing individ
ual i), straightforward calculations yield

(31)

and

(32)

dl
dy(xi) -«,-«*•» 2

d2l
dv(xif

= _„*<*.)

+ e2.U,) £

jeltk e '

1

kecMjeH.e^)2'
Starting with say 77 (x) = /3x, smooths are applied to
these quantities, as in (23), and the process is iterated.

The local likelihood technique can also be applied
to the Cox model—this is described in Tibshirani
(1984). We won't give details here. Instead, we'll illus
trate the two estimation techniques with a real data
example.

Miller and Halpern (1982) provide a number of
analyses of the Stanford heart transplant data. The
data, listed in their paper, consist of 157 observations

Fig. 2. The Stanford heart transplant data. The solid curve is the
local scoring function, the dashed line is the local likelihood function,
and the dotted line is the proportional hazards quadratic fit.

Table 1
Analysis of Stanford heart transplant data—age

Model -2 log
likelihood

Degrees
of freedom

Null 902.40 0
Linear 894.82 1
Linear + quadratic 886.24 2
Local likelihood (span .5) 884.65 2.95
Local scoring (span .5) 884.66 2.95

of time to failure (months) and two covariates, age
(years) and T5 mismatch score. Here we will consider
only the age variable.

Figure 2 shows the smooth obtained by local scoring
(solid line) and local likelihood (broken line). Also
shown is the fit obtained using a linear and quadratic
term for age in a standard Cox analysis (dotted line).
The smooths suggest that the relative risk stays about
constant up to age 45, then rises sharply. The quad
ratic model forces a parametric shape on the function,
and suggests (perhaps misleadingly) that the relative
risk drops then rises. Table 1 summarizes the results
of the various fitting procedures.

The approximate degrees of freedom or number of
parameters of the model are discussed in Section 9.
The table suggests that there is insufficient data to
distinguish between the quadratic and smooth fits.
This data set is analyzed more thoroughly in
Tibshirani (1984).

7. MULTIPLE COVARIATES
When we have p covariates, represented by the

vector X = (XX,X2, • • •, Xp), a general model specifies
E(Y\ X) = n andg(n) = 77(X), where 77 is a function
of p variables. We will first discuss the Gaussian case
and show why it is necessary to restrict attention to
an additive model.
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We assume
(33) Y=77(X) +c
where 77(X) = E( Y\ X), Var( Y\ X) = a2, and the errors
e are independent of X. The goal is to estimate 77 (X).
If we use the least squares criterion E(Y — 77 (X))2, the
best choice for 77 (X) is E( Y | X). In the case of a single
covariate, we estimated E(Y\X) by a scatterplot
smoother which in its crudest form is the average of
those y, in the sample for which x, is close to x.

We could think of doing the same thing for multiple
covariates: average the y, for which x, is close to x.
However, it is well known that smoothers break down
in higher dimensions (Friedman and Stuetzle, 1981);
the curse of dimensionality takes its toll. The variance
of an estimate depends on the number of points in the
neighborhood. You have to look further for near neigh
bors in high dimensions, and consequently the esti
mate is no longer local and can be severely biased.
This is the chief motivation for the additive model
77(X) = s0 + _C?=i Sj(Xj). Each function is estimated by
smoothing on a single co-ordinate; we can thus include
sufficient points in the neighborhoods to keep the
variance of the estimates down and yet remain local
in each co-ordinate. Of course, the additive model
itself may be a biased estimate of the true regression
surface, but hopefully this bias is much lower than
that produced by high dimensional smoothers. The
additive model is an obvious generalization of the
standard linear model, and it allows easier interpre
tations of the contributions of each variable. In prac
tice a mixture of the two will often be used:

(34) 7, (X) = so + t sj(Xj) + £ (JjXj,

7.1. Estimation—The Additive Regression Model
We now turn to the estimation of s0, Si(-), •••»
Sp(-) in the additive regression model

(35) E(Y\X) = s0+ I 8j(Xj),
7=1

where Esj(Xj) = 0 for every j.
In order to motivate the algorithm, suppose the

model Y = So + _£;=i Sj(Xj) + c is in fact correct, and
assume we know s0, s.(-), ••-, s,_,(-), sj+1(-), •••,
Sp(-). If we define the partial residual:

Rj = Y - so - I sk(Xk),

then E(Rj\Xj) = sj(Xj) and minimizes E(Y - s0 -
Zfc-i Sk(Xk))2. Of course we don't know thes/,(-)'s, but
this provides a way for estimating each s,(-) given
estimates {£■(•), i ^ j\. The resulting iterative proce

dure is known as the backfitting algorithm (Friedman
and Stuetzle, 1981):

Backfitting Algorithm
Initialization: s0 = E(Y), $\(-) m s\(-) — • • •

= s\(-) = Q, m = 0.
Iterate: m = m +1

for; = 1 top do:

Rj=Y-S()-l$Z(Xk)

- 1 srl(xk)
k-j+\

s?(Xj)=E(Rj\Xj).

Until: RSS = El Y - s0 - £ sf(X,) I fails to

decrease.

In the above sf( •) denotes the estimate of s,(•) at the
rath iteration. Notice that by effectively centering Y
at the start, we guarantee that Esf (Xj) = 0 at every
stage. It is clear that RSS does not increase at any
step of the algorithm and therefore converges. Brei-
man and Friedman (1985, Theorem 5.19) show in the
more general context of the ACE algorithm that the
solution £ sJ'(Xj) is unique and is therefore the best
additive approximation to JS(Y|X). This does not
mean that the individual functions are unique, since
dependence among the covariates can lead to more
than one representation for the same fitted surface.
These results do not depend on the validity of either
the additive model for E(Y\ X) or the additive error
assumption as in (33).

If we return to the world of finite samples, we
replace the conditional expectations in the backfitting
algorithm by their estimates, the scatterplot smooths.
Brieman and Friedman have proved:
• For a restrictive (impractical) class of smoothers,

the algorithm converges.
• For a less restrictive class, the procedure is mean

square consistent in a special sense. Suppose that
the rath iteration estimate of s, is sf, where the hat
implies it is a function of the sample size n. Let sf
be the estimate of s, at the rath iteration of the
algorithm applied to the distributions. Then
E(sf(X) - sf(X))2 -> 0 as n -> 00, with ra fixed.
A special case arises if we use the least squares

regression a + SXj to estimate E(- \Xj) at every stage
of the algorithm. We can once again invoke the Brei-
man and Friedman results for this projection operator,
which show that the algorithm converges to the usual
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least squares estimate of the multiple regression of Y
and X. This is true for both the usual data estimate
or the estimate in distribution space as in Section 5.
Hastie and Tibshirani (1984) give an elementary proof
of this fact due to Werner Stuetzle.

Although these results are encouraging, much work
is yet to be done to investigate the properties of
additive models. In multiple regression we need to
worry about collinearity of covariates when interpret
ing regression coefficients; perhaps cocurvity has even
worse implications when trying to interpret the indi
vidual functions in additive models. This would call
for nonparametric analogues of linear principal com
ponents analysis—a standard device for determining
lower dimensional linear manifolds in the data. Some
work in this direction has been done (Hastie, 1984b;
Young, Takane, and de Leuuw, 1978).

If the purpose of our analysis is prediction, these
problems are less important. We proceed in an ex
ploratory spirit, and hopefully a sound bed of theory
will develop around these as yet unanswered ques
tions.

7.2. Backfitting in the Local Scoring Algorithm

For multiple covariates the local scoring update (22)
is given by

(36 ) r t z ) = E u ( x ) - dl/dri
E[dH/dn4

and in exponential family case (24) is

„Hx) = E[vU) + (Y-n) (dn/dn) | x]
(37) - E ( Z \ x )
where g(n) = 77 and Z is the adjusted dependent
variable. For the reasons described in the previous
section, we will restrict attention to an additive model:

i.(X) = so + S sj(Xj).

We see that (37) is of the same form as equation (35),
with Z playing the role of Y. Thus to estimate the
s;(-)'s, we fit an additive regression model to Z, treat
ing it as the response variable Y in (35). The sum of
the fitted functions is 77° of the next iteration. This is
the motivation for the general local scoring algorithm
which we give for the exponential family case as in
(37).

General Local Scoring Algorithm

Initialization: s0 = g(E(y)), s?(-) ■ s°(-) - • • •
= s°p(-) = 0, ra = 0.

Iterate: ra = ra + 1

1. Form the adjusted dependent variable

Z = Vm~l + (Y - fim-l)(dr,/dfim-1),

where

, m - l _= so + S sfl(Xj) and
. - 1

2. Form the weights W= (dli/dr]m~x)2V~'1.
3. Fit an additive model to Z using the

backfitting algorithm with weights W,
we get estimated functions sf(-) and
model 77m.

Until: E dev( Y, nm) fails to decrease.

Step 3 of the algorithm is simply the additive regres
sion backfitting algorithm (Section 7.1) with weights.
Hastie and Tibshirani (1984, Appendix B) show why
weights are required even in the distribution version
of the algorithm. To incorporate them, the data is first
transformed using the weights, and the backfitting
algorithm is then applied to the transformed data.

From the results of the previous section, we see that
the inner loop converges. In particular, if each
smoother is replaced by the simple regression on the
corresponding covariate (for data or distributions), the
backfitting algorithm converges to the usual
(weighted) multiple regression. This shows that in
this case, the algorithm is identical with the usual
GLM estimation procedure using Fisher scoring as in
(12) and (13). Once again the data analogue of the
algorithm replaces weighted conditional expectations
by weighted smoothers. The span for each smoother
is chosen by cross-validation as described in Section
4.2. Note that for nonexponential family models an
additional backfitting step is required to compute the
denominator of the second term in (36).

Stone (1986) has shown that under mild regularity
conditions, a unique best additive approximation (in
terms of Kullback-Leibler distance) exists for any
exponential family model. We conjecture that the
general local scoring algorithm converges to this best
additive approximation.

It is important to stress the generality of the pro
cedure. First, note that in either the backfitting algo
rithm or its generalization, different smoothers may
be used for different covariates. As a simple example,
a linear least squares fit would be used to "smooth" a
binary covariate or a continuous covariate for which
a linear fit was desired. Other possibilities might
include a periodic smoother for a covariate like day of
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the week, or a smoother that forces monotonicity
(Friedman and Tibshirani, 1984). Secondly, interac
tions can be incorporated by defining a new covariate
to be the product of two or more covariates, then
smoothing on the new covariate. Interactions involv
ing categorical covariates can be handled with dummy
variables in the usual way.

The backfitting idea is also used in the local like
lihood estimation procedure to incorporate multiple
covariates. To estimate a new s,(-), or to adjust sy(-)
for other Sk(-)'s in the model, Sj(-) is re-estimated
holding all others fixed. The algorithm cycles through
the functions until convergence. The details can be
found in Tibshirani (1984).

7.3. The Breast Cancer Example Continued

We continue our analysis of the breast cancer data
using all three covariates. The model is now log
[p(x)/(l -p(x))] = s0 + £;-. Sj(xj). This is preferable
to modeling p(x) by an additive sum, since we would
have to check that the estimated probabilities are
positive and add to 1; the logit transform allows our
estimates to be unrestricted. There are other reasons
for using the logit transform; on the logit scale prior
probabilities appear only as an additive constant
(McCullagh and Nelder, 1983, page 78). This is useful
in biomedical problems where there is often some
established population risk, and the problem is to see
what factors modify this risk for the sample under
study.

Table 2 summarizes the various models fitted (by
local scoring). The approximate degrees of freedom
(dof) or number of parameters of the model are dis
cussed in Section 9. Auto in the column labeled spans
indicates that each time a smooth was computed, the
span was selected by cross-validation. The entry D2
refers to the percentage of deviance explained and is
in direct analogy to the more familiar R2 in regression.

Table 2
The analysis of deviance (ANODE V) table for the breast

cancer data
■

Degrees
Model Spans of

freedom
Deviance D2

Constant 1 353.67
XUX2,X3 All linear 4 328.75 .07
*Jl *2i X3 AH .5 8.8 307.89 .13
Xi ,X2 ,X3 Auto 8.0 308.22 .13
Xi ,X3 Auto 5.9 317.66 .10
* _ , * 3 Auto 5.0 312.68 .12
Xi ,X2 Auto 4.1 346.71 .02
Parametric 7 302.30 .15

Figures 3, 4, and 5 show the estimated functions for
our model with deviance 308.22 and dof = 8.8.

Landwehr, Pregibon, and Shoemaker (1984) ana
lyzed this data set and in particular considered partial
residual plots in order to identify the functional form

Fig. 3. The circles represent s(age), where the area of the circles is
proportional to the number of points. The dashed term is the cubic
polynomial term in (38).
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for each covariate. Their final model was

(38) logitp(x) = 0O + ft*i + fax2 + fcx\ + /34x2
+ foxlx2 + p6(\og(l+x3))

with a deviance of 302.3 on 299 degrees of freedom.
We fit this modejl in two ways: using a) GLIM and
b) the backfitting procedure with linear fits for the
transformed variables. As expected, the results agreed
(up to four significant figures). This model is labeled
parametric in the table. We have superimposed the
parametric model terms in the figures, and note that
the functions are very similar. If jiXi is the estimated
linear model, and p, the corresponding probability
estimate, the partial residual for variable / and obser
vation i is defined by

(39) r(xij) = $jXij + t
Vi ~ Pi

Pi(l ~ Pi)'
Landwehr, Pregibon, and Shoemaker (1984) show that
if the true model is

l0g[p(X)/(l - p(x))] = ft + 2 PkXk + Sj(Xj),

andsj(-) in linear, then E[r(Xj) \ Xj = x]x Sj(x). Thus
they use the smooth of the partial residuals to suggest
the functional form. This result breaks down if the
other terms are not linear (Hastie, 1984a; Fienberg
and Gong, 1984). One can see from the previous sec
tion that smoothing the partial residual corresponds
to the first step of the general local scoring procedure
in the local scoring algorithm, if our starting guess is
the linear model. The local scoring procedure contin
ues, however, by simultaneously estimating and ad
justing nonparametric functions for all the covariates.

8. COMPARISON OF LOCAL SCORING TO
LOCAL LIKELIHOOD ESTIMATION

In a number of examples that we have tried, the
local scoring and local likelihood procedures give very
similar results. This is not surprising in light of the
discussion of Section 5, where we saw that both tech
niques are based on empirical estimates of the ex
pected log likelihood. The difference seems to be in
computational speed: local scoring is 0(n) while local
likelihood, if the span increases like nc, is 0(nc+1). For
large data sets, the local scoring procedure is consid
erably faster. This leads us to ask: will the two pro
cedures always give similar estimates? Artificially,
they could be made very different. The reason for this
is as follows. For a single covariate, the local likelihood
procedure is completely local; that is if Xj is not in the
neighborhood for estimating sfo), then (xjf y,) has
absolutely no effect on the estimate s(xi). This is not
true in the local scoring procedure, for as the smooth

operation is iterated, the estimates s(xj) enter into the
computation of s(x,). Thus sending y, off to +oo would
have a large effect on the estimate of $fa) in the
smooth updating procedure, but no effect in the local
likelihood procedure.

Given the theoretical basis of Section 5, it seems
eminently reasonable that the two procedures be
asymptotically equivalent in some sense. In Hastie
and Tibshirani (1984) we sketch a proof of this fact
for exponential families.

For finite samples, we can describe operationally
the difference as follows, using logistic regression as
an example. Suppose we start with p(x,-) = y, the
overall proportion of l's. Then the first iteration for
both procedures is identical:
• Local scoring regresses z, = log[p(x,)/(l -p(x,))] +

(yj ~ P(xj)/(p(xj)(1 - p(xj))) on Xj for; E Nh with
weights p(x,)(l - p(xj)), to obtain the estimate
■nl(xi); this is the local linear smoother operation in
this neighborhood.

• Local likelihood does exactly the same operation in
computing the maximum likelihood estimate (MLE)
in the neighborhood, since this is the first step in
the adjusted variable regression procedure used to
compute the MLE.

The second iterations are very similar:
• Local scoring regresses

Zj = v1(xj) + (yj-p\Xj))/(pX(Xj)(l -P'(Xj)))
with weights p1(xj)(l - pl(xj)) against x;- for; £ Nt
to obtain the estimate r}2(xi).

• Local likelihood, however, regresses

zj = vHxj) + (yj - pl(xj))/(p}(xj)(i -pKxj)))
against Xj with weights pl(xj)(l — p1 (*/)), where
j]}(xj) refers to the extrapolated value of 771 at xj
derived from the linear estimate 77 l(xj) = ft; + 'puXj.

If the function is fairly linear in the neighborhood
then these two steps will yield similar estimates. For
a given point Xj, the local scoring algorithm uses its
latest estimate of p(xj) for every neighborhood in
which Xj appears. The local likelihood procedure, how
ever, uses a linear approximation (on the 77 scale) for
p(xj) based on its estimate p(x,-) for; G iV,.

9. DISCUSSION
Generalized additive models provide a flexible

method for identifying nonlinear covariate effects in
exponential family models and other likelihood-based
regression models. In the two data examples given in
this paper, we utilized a degrees of freedom estimate
to assess the importance of covariates. This is based
on the expected decrease in the deviance due to
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smoothing, computable from the trace of the appro
priate "smoother matrix." We give details in Tibshir
ani (1984) and Hastie and Tibshirani (1984). In Hastie
and Tibshirani (1985a and references therein) we also
provide a method for computing confidence bands for
the smooths.

There are a number of ways that the setup can be
further generalized. For example, the local scoring
algorithm can be extended to provide nonparametric
estimation of the link function g(y.). Usually, g(n) is
assumed to be known; for example, in the linear logis
tic model, g(n) = log[/_/(l - /_)]. The generalization
allows g(n) to be estimated nonparametrically and
hence provides a check of two of the assumptions
inherent in linear logistic modeling: the linear form
for the covariates and the logit link. Details may be
found in Hastie and Tibshirani (1984). The local
scoring procedure can also be generalized to fit a
smooth version of McCullagh's (1980) model for or
dinal data, analogous to the extension of the linear
logistic model described here. In its most general form,
the algorithm can be applied to any situation in which
a criterion is optimized involving one or more smooth
functions. We discuss this in Hastie and Tibshirani
(1985b).

In the local scoring procedure we have used a
running lines smoother, but we noted that other
smoothers could be used. Cubic splines are a popular
technique for smoothing and would be an interesting
alternative. Wahba (1980) discusses the use of two-
dimensional "thin-plate splines" for estimating re
sponse surfaces. These are more general than the
additive model but are more difficult to interpret.
O'Sullivan, Yandell, and Raynor (1984) look at splines
for general exponential family models. Analogous to
the Gaussian case, they emerge as the solution to a
penalized likelihood problem. Again, an additive
model is not considered; instead, a general surface is
fitted. Green and Yandell (1985) propose similar tech
niques, with an emphasis on semiparametric models.
Stone and Koo (1986a) investigate the use of additive
B-splines for exponential family models.

The computations in this paper were performed
using the G AIM (generalized additive interactive mod
eling) package, available upon request from either
author. Also available from the authors are a GAIM
function for the S statistical language and a special
version of GAIM for the IBM PC.
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"All considered, it is conceivable that in a
minor way, nonparametric regression
might, like linear regression, become an
object treasured for both its artistic merit
as well as usefulness."

L. Breiman (1977)

This paper by Hastie and Tibshirani lays bare the
insight of the above remark of Leo Breiman made in
the course of the discussion of a seminal work on
regression with smooth functions (Stone, 1977). Here
Hastie and Tibshirani increase the store of both artis
tic merit and usefulness by plugging nonparametric
regression into the generalized linear model and by
alluding to a variety of possible further extensions. It
all makes being a statistician these days a joy—it
seems approaches are now available to attack most
any applied problem that comes to hand. (Under
standing the operational performance of those ap
proaches is clearly another matter however.)

It was nice to be asked to comment on such a
stimulating paper. I have divided my comments into
several sections, striving to focus on individual strains
present in the paper, believing that future research on
those strains will proceed at different rates.

1. STRUCTURE OF A BASIC PROBLEM
One has data (Y„ X,), i = 1, • • • , n, with n moder

ately large. One is willing to consider a model for the
individual Ys wherein: i) the conditional distribution
of Y given X belongs to an exponential family, ii) it
involves X only through 77 = 5. sj(Xj) with the $;(•)

unknown, but smooth, and iii) E{ Y | X} = /i(E Sj(Xj)),
with h(-) known. The parameter of the model is
0 = \sj( • )> J = 1> • • • > P\> ana" possibly a scale. The two
key elements of the model are a) that the S/(«) are
smooth and b) that £ Sj(Xi) is additive.

It is to be noted that this model continues the
contemporary statistical trend to eliminate distinc
tions between the cases of finite and infinite dimen
sional 6 or between discrete and continuous data.

The problem is of interest, for one may wish to
make inferences from the data via the model or one
may wish to validate a model with a low dimensional
parameter by imbedding it in a broader model, for
example.

2. CONSTRUCTION OF ESTIMATES
To begin, focus on estimating jj = 77 (X), via a

relationship that characterizes the true value 770.
Suppose one has a function p(Y\rj) such that
E0[p(Y\ 77) |X} is maximized at 77 = 770. An example
would be log f(Y\ 77), /(•) denoting the conditional
density of Y. Alternately, suppose one has a function
t(Y\ 77) such that E0[\{/(Y\ 77) | X} = 0 at 77 = 770. An
example would be d log /(Y\ i])/drj. Estimates of the
true 770 may be constructed by paralleling these rela
tions on the data. For example, given weights Wni(X)
such as in Stone (1977) one might take 77 to maximize

or to satisfy

Sp(Y, 177) V7m(X)

Z+(Yi\v)Wni(X) = 0.
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The estimate of Hastie and Tibshirani based on (26)
takes this form. One can expect such estimates to be


