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Vector Spaces of Magic Squares 

JAMES E. WAw III 
Bowdoin College 
Brunswick, ME 04011 

Exercise. An n X n magic square is an n X n matrix of real numbers in which the sum along 
each row, each column and each diagonal is a constant (called the line-sum of the magic square). 
For example, three 3 x 3 magic squares with line-sums 15, 3/2 and 0, respectively, are 

2 9 4 -1 5/2 0 1 0 -1 

7 5 3 3/2 1/2 -1/2 -2 0 2 

6 1 8 1 -3/2 2 1 0 -1 

(i) Show that the (matrix) sum of two n X n magic squares is an n X n magic square. If the 
line-sums of the squares are ml and M2, what is the line-sum of the sum? 

(ii) Show that the (matrix) scalar multiple of an n X n magic square by a real number k is an 
n X n magic square. If the original square has line-sum m, what is the line-sum of the 
scalar multiple? 

(iii) Is the set of all n X n magic squares (with all possible line-sums) a vector space? Why? 
(iv) Is the set of all n X n magic squares with line-sum m #0 a vector space? Why? 
(v) Is the set of all n X n magic squares with line-sum zero a vector space? Why? 

This exercise, suggested by Fletcher [3], encourages consideration of the algebraic structure of 
magic squares, as opposed to methods for generating them. In this article we follow Fletcher's 
suggestion, using familiar linear algebra techniques to determine the dimensions of the vector 
spaces of magic squares. Then we use these dimensions to establish an upper bound on the 
number of magic squares. 

Magic squares have fascinated people for centuries. A Chinese emperor is supposed to have 
seen one-on the back of a divine turtle, no less-as early as 2200 B. C. From that time on, 
mystical properties have been ascribed to them. In the middle ages, a magic square engraved on 
a silver plate and worn about the neck was thought to ward off the plague [5]. Writing in 1844, 
Hutton [4] reported: 

These squares have been called magic squares because the ancients ascribed to them great 
virtues, and because this disposition of numbers formed the basis and principle of many of 
their talismans. According to this idea a square of one cell, filled up with unity, was the 
symbol of the Deity, on account of the unity and immutability of God; for they remarked 
that this square was, by its nature, unique and immutable, the product of unity by itself being 
always unity. The square of the root two was the symbol of imperfect matter, both on account 
of the four elements and of the impossibility of arranging this square magically. A square of 
nine cells was assigned or consecrated to Saturn, that of sixteen to Jupiter, that of twenty-five 
to Mars, that of thirty-six to the Sun, that of forty-nine to Venus, that of sixty-four to 
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Mercury, and that of eighty-one, or nine on each side, to the Moon. Those who can find any 
relation between the planets and such an arrangement of numbers must, no doubt, have 
minds strongly tinctured with superstition; but such was the tone of the mysterious philoso- 
phy of Jamblichus,- Porphyry, and their disciples. Modem mathematicians, while they amuse 
themselves with these arrangements, which require a pretty extensive knowledge of combina- 
tion, attach to them no more importance than they really deserve. 

Nevertheless, mathematicians both before and after 1844 apparently attached enough impor- 
tance to magic squares to write thousands of pages about them. In 1888, F. A. P. Barnard, then 
president of Columbia and after whom Barnard College is named, published a 61-page paper [2] 
at the end of which he included an "approximately complete" bibliography of 47 scholarly 
papers and books on the subject. Today a complete bibliography on magic squares would 
probably require all 61 pages! 

The magic squares which are best known are those n x n squares which use only the first n2 
positive integers. These square arrays of the numbers 1 to n2 will be referred to as classical magic 
squares. The first example given in the opening exercise is a 3 x 3 classical magic square. 

Each magic square yields seven other magic squares, obtained from it by rotating it in the 
plane through angles of 900, 1800, and 2700 and by rotating it in space about its horizontal, 
vertical and two diagonal axes. These seven, together with the original, constitute the symmetries 
of the magic square. Symmetric magic squares are regarded as being identical. It is easy to show 
that the first example in the opening exercise is the only 3 x 3 classical magic square up to 
symmetry. 

More generally, we shall call any n x n array of n2 (integral, real, or complex) numbers in 
which each line-sum is constant a magic square. The second and third examples of the opening 
exercise are real 3 x 3 magic squares. Note that the same number may appear several times in a 
magic square, a statement which is not true of classical magic squares. 

This paper will consider only real magic squares, although all of the results are true for 
complex magic squares as well. If the entries are restricted to the integers, all of the results hold 
if "vector space" is replaced judiciously by "Z-module." From now on, all magic squares will be 
real magic squares unless it is specifically stated otherwise. Because 1 x 1 and 2 x 2 magic 
squares are not very interesting and because they bog down the proofs with special cases, it will 
be assumed that n > 3. 

We shall denote by MS(n) the set of all n x n magic squares; by mMS(n) the set of all n x n 
magic squares with line-sum m; and by OMS(n) the set of all n x n magic squares with line-sum 
zero. The opening exercise reveals that MS(n) and OMS(n) are vector spaces but that mMS(n) 
for m #0 is not. The space OMS(n) is a subspace of MS(n) which is, in turn, a subspace of the 
n2-dimensional vector space of all n x n real matrices. Thus the dimension of MS(n) is at most 
n2. (Note that mMS(n) is never empty: it always contains the square in which each entry is 
m/n.) 

Let us call each magic square in OMS(n), whose line-sums are all zero, a zero magic square. 
We will call two n x n magic squares equivalent if one can be obtained from the other by adding 
the same real number to each entry. It follows, trivially, that each magic square is equivalent to 
one and only one zero magic square: if an n x n magic square has line-sum m, it can " zeroed" 
by subtracting m/n from each entry. Thus there is a one-to-one correspondence between the set 
mMS(n) for a fixed m and the vector space OMS(n). 

This sets the stage for the main result of this paper. 

THEOREM. The dimension of OMS(n) is n2 - 2n - 1. 

Proof. If an n x n matrix A = (a.) is in OMS(n), its 2n + 2 line-sums are all zero. Thus there 
are 2n + 2 homogeneous linear equations in the n2 variables ay, 1 < i,j < n. Write these equations 
in the following order, called the standard order: first the n row sums in order, then the n column 
sums in order, then the NW-SE diagonal sum, and, last, the SW-NE diagonal sum. The resulting 
coefficient matrix will be a (2n + 2) x n2 matrix of O's and l's. When n = 3, it is the 8 x 9 matrix 
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I I I 0 0 0 0 o o 

O O 0 1 1 1 0 0 0 

O O O O O 0 1 1 1 

1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

O 0 1 0 0 1 0 0 1 

1 0 0 0 1 0 0 0 1 

O 0 1 0 1 0 1 0 O, 

where the elements in the jth column are the coefficients of the jth variable in the list 
ajj,aI2,aI3,a2I, a22,a23,a3l,a32,a33- 

In the coefficient matrix determined by A, the first 2n-1I rows are clearly linearly indepen- 
dent. But the 2nth row is a linear combination of the first 2n -1, being the sum of the first n 
rows minus the sum of rows n + I through 2n -1. Moreover, the last two rows are both linearly 
independent of the first 2n-1I rows: the nth column of the coefficient matrix has I's in the first, 
2nth and (2n +2)nd rows, and zeroes everywhere else, and the n 2th column has I's in the nth, 
2nth and (2n + I)st rows, and zeroes everywhere else, making it impossible to find a nontrivial 
zero linear combination of the first 2 n-1I rows with either of the last two rows. Finally, it is 
clear that neither of the last two rows is a scalar multiple of the other. Thus the matrix of 
coefficients has exactly 2n + I linearly independent r.ows and hence has rank 2n + 1. By the rank 
and nullity theorem [1], the dimension of OMS(n), which is the nullity of the coefficient matrix, 
is n2-_ (2n + 1). 

COROLLARY. The dimension of MS(n) is n 2- 2n = n(n -2). 

Proof. Let q = n2-_ 2n-1I and SI, . .., Sq be a basis for OMS(n), a subspace of MS(n). Let I be 
the magic square in MS(n) with I in every position, and consider the set B={S .S , I} 
consisting of n 2-2n vectors of MS(n). 

The set B spans MS(n), for if M is any magic square in MS(n) and M has line-sum m, then M 
is equivalent to the zero m'agic square MO = M-(ml n)I of OMS(n). As SI,..., Sq is a basis for 
OMS(n), MD = clI SI + * * * + cq Sq for some scalars cl I . .., cq, so M= clSl + *, * +cqSq +(m/n)I. 
Moreover, B is linearly independent, for the line-sum of the vector c ISI + + cq Sq +cq + II, 
where the ci's are scalars, is ncq+ 1. [See parts (i) and (ii) of the opening exercise.] If this vector is 
to equal the zero vector, which has line-sum zero, we must have ncq +I= or cq 0=. Then the 
linear independence of SI,_., Sq implies that cl= cq = as well. Thus B is a basis for 
MS(n). 

It is easy to see that the central entry of any magic square in OMS(3) is zero. This means that 
OMS(3) magic squares are anti-symmetric with respect to the diagonals. By the Theoremn, the 
dimension of OMS(3) is 2; thus a magic square in OMS(3) is uniquely determined by specifying 
any two entries not collinear with the central zero. If we choose the first two entries in the first 
row to be 1, O and O, 1, we get the following basis for OMS(3): 

I 0 -1 0 1 -1 
-2 O 2 -1 O 1 
1 0 -1 I -1 0 

According to the Theorem, the dimension of OMS(4) is 7. Using an argument of the same 
nature as that which shows that there is a unique 3 x 3 classical magic square up to symmnetry, it 
can be established that the sum of the four corner entries and the sum of the four central entries 
of a magic square in OMS(4) are both zero. With these facts, it is easy to find seven entries 
which, when specified, completely determine a 4 x 4 zero magic square. Two examples are: 

x x x 
x x x - - - x - 
x - - - x - x x 

x - x x 
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The seven squares obtained by putting 1 in one of the designated positions of either pattern and 
O's in the other six in all possible ways constitute a basis for OMS(4). For instance, the seven 
magic squares which form a basis for OMS(4) according to the first pattern are: 

1 0 0 -1 0 1 0 -1 0 0 1 -1 0 0 0 0 
00 0 0 0o 0 0 0 00 o0 0 1 0 0 -1 
0 2 -2 0 0 1 -1 0 0 1 -1 0 0 1 -1 0 

-1 -2 2 1 0 -2 1 1 0 -1 0 1 -1 -1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 -1 0 0 1 -1 0 0 0 0 
0 0 -1 1 0 -1 0 1 1 1 -1 -1 
0 -1 1 0 0 1 -1 0 -1 -1 1 1 

Motivated by this example, it is natural to make the following definition. A selection of 
n' - 2n - 1 positions in an n X n matrix is called a skeleton of OMS(n) if the assignment of real 
numbers to those positions uniquely determines entries in all other positions using the zero 
magic square conditions. Given a skeleton of OMS(n), the array of the 2n+ 1 positions not 
specified is called the frame of that skeleton. In the OMS(4) examples above, each array of x's is 
a skeleton and each array of dashes is a frame. When n is large, the number of positions in a 
skeleton is much greater than the number of positions in its frame, so it is convenient to think of 
skeletons in terms of the frames they determine. 

Every skeleton of OMS(n) leads to a basis of OMS(n) in a natural way, by assigning 1 to one 
skeletal positipn and O's to the rest in all n2 - 2n - 1 possible ways. We shall call this basis the 
natural basis associated with that skeleton. Thus we could determine a canonical basis for 
OMS(n) if we could agree on a canonical skeleton of OMS(n). Unfortunately, there does not 
appear to be any one skeleton of OMS(n) which is superior to, or more natural than, all the 
others. Some skeletons possess certain kinds of symmetry or near-symmetry, while others 
guarantee the presence of a large number of zeroes in the magic squares of the natural bases 
they determine. Preference for one skeleton over another seems to be largely a matter of taste. 

The preceding ideas can be used to determine a crude upper bound on the number of n x n 
classical magic squares. Since the sum of the first n2 integers is n2(n2 + 1)/2, each line-sum of an 
n x n classical magic square must be n(n2 + 1)/2. Letting 1= n(n2 + 1)/2, an n x n classical magic 
square can be zeroed by subtracting I/n from each entry. A skeleton of this n X n zero magic 
square consists of n 12-2n-I positions and determines the zero magic square, and hence the 
classical magic square, completely. Thus the number of n x n classical magic squares is the 
number of ways the n2 - 2n - 1 positions of this skeleton can be chosen from the n2 numbers 
1-1/n,2-i/n, ... , n2 -I//n, choosing each number no more than once. Since the number of 
permutations of n 2- 2n - 1 elements which can be formed from a set of n2 elements is 
(n2)!/(2n + 1)!, the maximum number of n x n classical magic squares, taking into account the 8 
symmetries of a magic square, is (n2)! /8(2n + 1)!. The imprecision of this bound is revealed 
even when n = 3: in that case, the bound says that there are at most nine 3 x 3 classical magic 
squares, while, as suggested earlier in this paper, it is easy to show that there is, in fact, only one. 
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