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A COMPLETE THERMODYNAMIC ANALOGY /
FOR LANDSCAPE EVOLUTION (%)

A.E. SCHEIDEGGER (*)

\BSTRACT

The analogy embodying an entropy concept for landscape evolution can be extended to all other
~ermodynamic functions.

A\TRODUCTION

Leopold and Langbein (1962) recently postulated an analogy between landscape evolution
nd the nonsteady-state temperature distribution in a planar medium. Their argument is based
1 the concept of entropy and thus on a formal analogy with regard to the second principle of
sermodynamics, between landscape, and temperature fields. Scheidegger (1964) has shown

st there is a statistical justification for this, originally purely formal, analogy.

Since the success in explaining the evolution of landforms by means of the entropy-analogy
. profound, the question arose as to whether the analogy with thermodynamics could not be

atended further than originally envisaged. As has been noted above, the analogy, up to this

~oint, pertains only to the entropy concept, i.e. it involves only the second principle of thermo-
‘vnamics. One might expect that there also ought to be phenomena in landscape evolution that
.ould be governed by a corollary of the first principle of thermodynamics. In other words, it
night be expected that there is a complete analogy between landscape evolution and the
wo-dimensional) nonsteady state temperature distribution in an ideal gas.

It is the aim of this paper to investigate the possnbll:ty of such a complete temperature analogy,
:nd to show that the latter, indeed, exists.

[HE COMPLETE CORRESPONDENCES

In ordre to fix the background of our investigation, we recall the analogy relations of Leopold
nd Langbein (1962) between a temperature field and a landscape.

The temperature field is described by the temperature T the quantity of heat Q is associated
«th a temperature. The planar Cartesian coordinates are x and y.

The landscape is described by the elevation & of a point above sea level; the mass M is
ssociated with an elevation. The planar Cartesian coordinates are again x and y.

The analogy between a thermal field and a landscape then maintains the following corre-
pondences:

T—h
dQ —dM

lased on the above, it is possible to define corresponding entropies (dS=dQ/T«>dM/h) and
ther thermodynamic properties. Furthermore, the quantity of heat introduced in a given

wubstance is given by

dQ =9dT

blication authorized by the Director, U.S. Geological Survey.

(1) Pu
(2) U.S. Geological Survey, Address of author: ¢/o Umvcrstt} of lllmms Urbana, Illinois, U.S. A.

S




with 3 being a heat capacity coefficient. The analog of this in a landscape is
dM = ydh

where » is now an analog of the heat-capacity coefficient.
Our task is now to extend the above correspondences to energy terms. For a regy).,
thermodynamic system, the first principle of thermodynamics states (see e.g. Planck, |94

Uz_Lfl =Q+W

or, in differentials

dU =dQ+dW

where Uis the internal energy, Q is the quantity of heat introduced from outside and W the wor
performed externally on the system. In landscape evolution, one would like to have, therefor,
a similar relation, viz.

U,—U, =M+W

or, in differentials

dU =dM +dW

where U now signifies some potential, M the mass that was introduced and W some *fictitioy
work ™ whose physical meaning has vet to be defined.
For an ideal gas, W is

R

W= —J pdV

Here, Vis the geometric domain in which the variables vary, and p the pressure. Because of th
ideal gas law, the latter can be expressed as follows

T
= const—
v

The last relation yields a means of serting up an analogy to * pressure” in landscapes. In th
latter, V" corresponds to the area 1 under consideration, T is the height /i (see above) so that on:
has

h
pl'.lndscapc = const i)
A
at least in the equilibrium case.
If we are essentially interested in an “average™ geographic cross section across a landscap
we have only one space-coordinate (x); denoting the total length of the section by L, we ha
(denoting the constant by x)

h

h
pl.lndsc.lpp = const —

!

The analog of work is then

e

=~ pav -

.

J «(h/L)dL
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is in a landscape is . The equilibrium case, which is here under discussion, would therefore be illustrated, so to
.bya “box of sand”, or by an alluvial fan with a straight surface-section (fig. 1) and / denoting
average height,

The relationships for the *pressure” in a landscape and the potential already establish the
:mplete analogy between thermodynamics and certain variables in landscape theory.

r
’

wces to energy terms. For a regy),;
namics states (see e.g. Planck, 191

roduced from outside and W the wor i
on, one would like to have, therefor,

Fig. I — Alluvial fan (in section) representing a landscape of average height 4.
as introduced and W some “fictitioy. ;| \RNOT CYCLE

We illustrate the analogy established above on the example of a Carnot cycle. In ordinary
ermodynamics involving an ideal gas, the Carnot cycle demonstrates the fundamental principles
wolved in a classical way.

- The Carnot cycle for an ideal gas consists of the following processes (see e.g. Planck, 1945,

rv. and p the pressure. Because of the |~ 63 ) _ , ;
. Anisothermal expansion of a certain quantity of gas at temperature T1. During this phase, the
quantity of heat Q1 must be taken from a heat reservoir, as the gas performs the work Wi ;

An adiabatic compression. The gas temperature goes from 71 to T2; at the same time the

work W% must be done on the gas;

An isothermal compression. An amount of heat Q- enters a reservoir at Ts, and the work W

is done on the gas:

2y to “pressure” in landscapes. Inthe . An adiabatic expansion until the temperature drops in the gas from 7= to 71 ; the gas performs
is the height /i (see above) so that one the work Wj.

For the above Carnot cycle, the first principle of thermodynamics states (note that all the
.uantities Q, W are defined as positive)

: ! 02— 0, = Wy— Wy + Wy — W,

e second principle implies

phic cross section across a landscape. 0, 0,
|| length of the section by L, we have | i =1
g 3 T T
To set up the analogy of the above process in a landscape, we assume that a landscape section
_ _ij rcomposed of a certain mass of rock ol length L with the average height /1 at surface above
L ome given base level. The steps of the “Carnot™ cycle (see fig. 2) are then:

The landscape section is extended from L; to Ls, with & being held at /. In order to do this,
the mass M1 must be added to the landscape, and the value of W is

oL,
LydL W, = a(hy/LYdL =eh, Iog%
JL 1
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2. The landscape material is compressed until the average height reaches 2. No mass is adg,; I

or subtracted. The quantity W is

*h=h; h
J 2——dL(h)
w=ny  L(h)

and since mass is constant, 1L = const = . The quantity W follows:

I«’2=Jah—’ﬁ;=
B h-

(*ha

dh = J adh = a(h,—hy)
fy
or
W, =a(h,—hy)

3. The landscape material is “compressed” some more at constant average height ha, A:
amount M2 of mass is taken from the system while Wi is

oL
c:h—z dL = uh,log Ls

_JLJ L Es

4. An expansion occurs with no mass added or subtracted until & drops from A= to h1. We haw

W, = a(hy—h,)

W,

Note that all quantities W are defined so as to be positive. The cycle is now closed and the
model is in its original state. The first principle of thermodynamics (i.e. its analog in the presen:
case) states

M,—M, =W,—W,+W,— W,

=a(h,—hy) — zh, log L + «h, log Ly _ o(h,—hy)
Ly L,

L b
=a| —h, log=2 + h, lo —’];
|: 1 gL 2 gL

1 4

note that La> Ly, Lo> Ly, ha>- Iy, Thus

L L,
M,—M, =z| h,log = —h log —“]
Y A

4 1

The last is a relation valid for a Carnot process of the type envisaged.
Next, the second fundamental principle of thermodynamics (i.e. its analogy in landscap
evolution) states

M, M,
h, h,

=

60

| tarl’er by Leopold a

l
%

The latter is nothing
«ill make its elevat
evpression of the lay
of entropy in landsca
the process is a stati

Thus, the secon
Lecopold and Langh
s possible because

It is possible to
(see fig. 2). The heigh
s not one that is |
sponding step in gas-

Since, in thermog¢
versa), in our analog

THERMOD YNAMIC PG
With the definiti

lunctions in landscal
The “potential™

Since we have been
now is able to assign

now found an equi




ight reaches /2. No mass is adde

W5 follows:

2(hy—hy)

constant average height /., A,

L;
L,

til i drops from /12 to 1. We have

. The cycle is now closed and the
mics (i.e. its analog in the present

=)

5 L
= {uhl log& + h, logi}:
L L

1 4
L }
~ .

2 envisaged.
ics (i.e. its analogy in landscape

he latter is nothing but the expression of the fact that an addition of material to a landscape
il make its elevation proportionately higher, so that the last equation can be taken as an
apression of the law of conservation of mass. It is clear that this must be so, since the analogy
“entropy in landscape evolution is justifiable (as shown by Scheidegger, 1964) by assuming that
1 process is a statistical one with mass being conserved.
Thus, the second principle leads to a further confirmation of the analogy postulated by
_copold and Langbein (1962) and verifies the contention of Scheidegger (1964) that this analogy
. possible because mass must be conserved.

il )

Fig. 2 — Carnot cycle in a landscape section.

It is possible to illustrate the Carnot cycle, for instance, with a hypothetical “alluvial fan®”
«e fig. 2). The height /i refers to the mid-point of the fan (“average height™). Of course, step 2
snot one that is likely to occur in nature without external action, but neither is the corre-
ronding step in gas-thermodynamics!

Since, in thermodynamics the Carnot process is one transforming work into heat (or icev
ersa), in our analogy it connects the variables W and M.

THERMOD YNAMIC POTENTIALS

With the definition of ¥, it is now possible to set up a complete analog to thermodynamic
inctions in landscape theory.
The “potential ™ U is defined by
dU =dM +dW

‘nce we have been able to give a meaning to the quantity W in landscapes, it is clear that one

“ow is able to assign a meaning to the potential /. The analog of entropy, S, was already defined
arlier by Leopold and Langbein: it is clear that all ordinary thermodynamic functions have

w found an equivalent in landscape theory. To recapitulate, we have (with 2 and y being
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o the first order Markov process

5

(3)

(4)

ations which make up the record. If a

cates the amount of dependence among

he 50 observations are time dependent,
not contribute as much information as
yuld contribute more information than |
ym events contribute more information

ways true—under certain conditions A
V random events, and in some cases the
e sample size N would indicate. The

i second order Markov process as given
it is possible to determine the effective
ount of information as the N dependent
if the mean of the N dependent events.
ndom events and solving for N’.

I ()

here &2 is the variance of both the dependent and independent series. The summation of the

088 products can be written

Hence

[+

i

N

> x

1j=

i<j

[

Ny Xo+X X3+ X Xy H N Xy

T X3 X3+ X3 X +...+X3 Xy

+ Xy- Xy

N=1 N-=2 1

N N
E(Y )Y xix) =52[k; P+ k; pk+---+k; Pl

i=1 j=2

i<j

()

8)

shere o is the kth autecorrelation. For the second order Markov process ox can be written as

wendall: 1951)

i shere

_ ¢t sin (k@)

P 5
sin
c=.—b
a
cosfl = —
2,/=b
. 1+
tanyy = ~tan(
-

there @ and b are the coefficients given in equation (1).
Now o4 can be rewritten by expanding sin (k) --y),

"‘ummation in equation (8),

N
z X; Y})] (61

——— e

B=

\here

4=

1

cot iy

T 1—12ccosl+ c?

(1 —2ccosl

2

¢

5

)2

pr = ¢* cotyy sin k! + ¢* cos k@

E(XZx;x;) =0*(A+B)

[ Nesinf—

¢ 2 sinNO = M sin(N+1)0 —
— ¥ sin(N=1)0 + c(1—¢?) sin 6]

(1 —2ccosf+¢*]7"

N cos(N=1)0 — 2¢¥ T2 cos NO + N cos (N +1)07
— ¢ cost) + NecosO — Ne? —2Ne? cos® 0 — Ne* +

+ 3N cosl —ccosl +2¢°

)

(10)

(11)

Sum up ox over sin k) and cos &% (Jolley: 1961), thus giving compact expressions for each

(12)

(13)
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Hence

1 3 a2
Var(x) = \1—_ [No~ + 20" (A+B)] (14 l
1

The effective number of observations N is the number of random events whose variance of y,
mean equals the variance of the mean for a sequence of autocorrelated events.

The variance of the mean 1 for the V' random events is
2
a
V'dl'(.\_") == (IS
N
Equating (14) to (15) and solving for N’,
2 -1
N' = N|:1 + KT(A-E- B):I (16

Tables 1-7 give values of N’ for N=35, 10, 20, 30, 40, 50, 100 and for 0<p1<09 an
—0.9<02<0.9. No negative values of o3 are considered because hydrologic phenomena yig:
positive first order autocorrelations. The asterisks in the table represent certain values of g; an:
o2 which are inadmissable due to mathematical constraints on the second order Marke
process. These constraints are (Kendall: 1951), '

p?.h-p_,l<0 .
I—p7 f

2 2
1:& ijpz] < 4’ P2 le
1=y 1-pi

/2<1
1—p1

] [_ (pz—pf) _(pr—pipd)’
V 1—pi 4(1—-p}?

It is evident from tables 1-7 that negative values of 02 yield high values of N” such that N'>
Only for 2 = —0.1 are there some values of N’ such that N’< N. In many cases N’ is muc
greater than N, and as 02 increases, so does N’. For example, when N =30, g1 =0.3, p2= -0}
then N’ = 850. That is, 30 dependent events are contributing as much information as 850 rando=
events—a startling result indeed! This is an extreme situation, however. For a more realistc
example let N =30, 01 = 0.3, pa= —0.2. Then N" = 31. One can speculate as to what is happenin:
to produce such high values of N’, and it would appear that the negative serial correlations
responsible.

As an example of the effect negative serial correlation has on a system, consider the c
where 02 = 0%, so that the Markov process is first order. The effective sample size N’ for i
process (Dawdy and Matalas: 1964) is

N 1\,-[ i +£(Nm(l —p)=p,(L —pY) )’j“‘
N (1—p)°

-1 <

I PL1—P1P2

(12
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en N =30, 01 =0.3, then N = 24. But when N = 30 and p1 = —0.3, then N’ =
al correlation is adding more information than the positive serial correl

54, Thenegative
ation is taking away.

ARY AND CONCLUSIONS

om the values of N’ in tables 1-7, it would seem that for the second order Markov process
egative values of g2 are working more for the investigator than the positive values of p1 and
e working against him. That is, sequences generated by the second order Markoy process
more information than sequences generated by the first order Markov process. Whether the
0d order process could accomodate certain hydrologic time series, as well as meteorologic
cochronologic sequences, requires further research.
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