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\HSTRACT

The analogy embodying an entropy concept for landscape evolution can be extended to all other
-.ermodynamic functions.

\TRODUCTION

Leopold and Langbein (1962) recently postulated an analogy between landscape evolution
tnd the nonsteady-state temperature distribution in a planar medium. Their argument is based
n the concept of entropy and thus on a formal analogy with regard to the second principle of
ermodynamics, between landscape, and temperature fields. Scheidegger (1964) has shown

mat there is a statistical justification for this, originally purely formal, analogy.
Since the success in explaining the evolution of landforms by means of the entropy-analogy

. profound, the question arose as to whether the analogy with thermodynamics could not be
Mended further than originally envisaged. As has been noted above, the analogy, up to this
joint, pertains only to the entropy concept, i.e. it involves only the second principle of thermo-
jynamics. One might expect that there also ought to be phenomena in landscape evolution that
,ould be governed by a corollary of the first principle of thermodynamics. In other words, it
night be expected that there is a complete analogy between landscape evolution and the
two-dimensional) nonsteady state temperature distribution in an ideal gas.

It is the aim of this paper to investigate the possibility of such a complete temperature analogy,
.nd to show that the latter, indeed, exists.

The complete correspondences

In ordre to \\\ the background of our investigation, we recall the analogy relations of Leopold
md Langbein (1962) between a temperature field and a landscape.

The temperature field is described by the temperature T; the quantity of heat Q is associated
■ ith a temperature. The planar Cartesian coordinates are .v and v.

The landscape is described by the elevation /; of a point above sea level; the mass M is
ssociated with an elevation. The planar Cartesian coordinates are again x and v.

The analogy between a thermal field and a landscape then maintains the following corre-
pondences:

T*-*h

iised on the above, it is possible to define corresponding entropies {dS = dQ/T<—>dM/h) and
ther thermodynamic properties. Furthermore, the quantity of heat introduced in a given

•instance is given by

dQ =ydT

0) Publication authorized by the Director. U.S. Geological Survey.
(2) U.S. Geological Survey, Address of author: c/o University of Illinois, Urbana, Illinois, U.S.A.
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with y being a heat capacity coefficient. The analog of this in a landscape is

dM = yd/?
where y is now an analog of the heat-capacity coefficient.

Our task is now to extend the above correspondences to energy terms. For a regular
thermodynamic system, the first principle of thermodynamics states (see e.g. Planck, 1945

or, in differentials
U 2 - U i = Q + W

dU = dO + d\V
where V is the internal energy, Q is the quantity of heat introduced from outside and I^the wort
performed externally on the system. In landscape evolution, one would like to have, therefore
a similar relation, viz.

or, in differentials
U2-Ul =M + W

d V = d A / + d i y

where il now signifies some potential, M the mass that was introduced and W'some "fictitiou
work" whose physical meaning has yet to be defined.

For an ideal gas, W is

The equilibrium cas
jjv,bya "box of sand'
:. average height.

The relationships fal
-mplete analogy betw

IK = - pdV

Here. V is the geometric domain in which the variables vary, and p the pressure. Because of the
ideal gas law, the latter can be expressed as follows

R T T
n = — = const —

V V

The last relation yields a means of setting up an analogy to "pressure" in landscapes. In the
latter, I 'corresponds to the area A under consideration, T is the height h (see above) so that one
has

."landscape = COnSt A
at least in the equilibrium case.

If we are essentially interested in an "'average" geographic cross section across a landscape
we have only one space-coordinate (.v): denoting the total length of the section by L, we ha*
(denoting the constant by x)

h h
Plandscape = COtlSt - = -«

The analog of work is then
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W = - pdV = - a(/ i /L)dL
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>n, one would like to have, therefore

The equilibrium case, which is here under discussion, would therefore be illustrated, so to
v.by a "box of sand", or by an alluvial fan with a straight surface-section (fig. 1) and//denoting
.average height.
The relationships for the "pressure" in a landscape and the potential already establish the

•niplete analogy between thermodynamics and certain variables in landscape theory.

Fig. 1 — Alluvial fan (in section) representing a landscape of average height /;.
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We illustrate the analogy established above on the example of a Carnot cycle. In ordinary
ermodynamics involving an ideal gas, the Carnot cycle demonstrates the fundamental principles
ivolved in a classical way.

The Carnot cycle for an ideal gas consists of the following processes (see e.g. Planck, 1945,
- 65):

An isothermal expansion of a certain quantity of gas at temperature 7_. During this phase, the
quantity of heat Qi must be taken from a heat reservoir, as the gas performs the work W_;
An adiabatic compression. The gas temperature goes from 7i to 7b; at the same time the
work W< must be done on the gas;
An isothermal compression. An amount of heat ga enters a reservoir at T->, and the work Jf_
is done on the gas;

• An adiabatic expansion until the temperature drops in the gas from Tzto 7i; the gas performs
the work Wa.
For the above Carnot cycle, the first principle of thermodynamics states (note that all the

jantities Q. W are defined as positive)

'hesecond principle implies
Q.i-Q,\ = w_ - wx + w3 - iy4,

t2 r,
To set up the analogy of the above process in a landscape, we assume that a landscape section

composed of a certain mass of rock of length L with the average height h\ at surface above
ome given base level. The steps of the "Carnot" cycle (see fig. 2) are then:

The landscape section is extended from L\ to Lz, with /; being held at In. In order to do this,
the mass Mi must be added to the landscape, and the value of W is

L 2 r

i a(/i,/L)dL =afc_log—l
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2. The landscape material is compressed until the average height reaches hi. No mass is addc- I T!ie l-tter 's BOthiffl
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I cxpression of the la\
h , . . , | 0 f e n t r o p y i n l a n d s c j

h - h , L ( h ) ^ e p r o c e s s i s a s t a t' • "■ ' • T h u s , t h e s e c o n

Leopold and Langb
is possible because

W , =

and since mass is constant, hL = const =/?. The quantity W% follows:

W7 =

or

a— 4 = <M= I "adfc=a(/i,-/«-,)
p h J / . ,

W2=a(h2-hl)
3. The landscape material is "compressed" some more at constant average height h%, A:

amount Mi of mass is taken from the system while Wz is

Wx = -
' U ] U - A l I X L 3

a— dL = a/t2log —
L i L L 4

4. An expansion occurs with no mass added or subtracted until /; drops from hi to hi. We ha\:

Note that all quantities Ware defined so as to be positive. The cycle is now closed and the
model is in its original state. The first principle of thermodynamics (i.e. its analog in the present
case) states

M2 - M, = W2 - Wx + W3 - WA

= a(/.2 — /.,) — 2/1, log — + -jM2 log — — a(/I2 —/«,)
L , L 4

= a ft, log-^ + /i2log-

^

It is possible to
(see fig. 2). The heigHJ
s not one that is li
^ponding step in gasfl

Since, in thcrmo<
in our analog

note that L*> La, L»> Li, hzl In. Thus

A/2-A/ , =y.

siniJ I versa),

h2 log n, log —-
i * 4 - ^ 1 -

Thc last is a relation valid for a Carnot process of the type envisaged.
Next, the second fundamental principle of thermodynamics (i.e. its analogy in landscape

evolution) states

M i _ M 1 _
h 2 h t

Thermodynamic pc

With the definitij
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The "potential"

Since we have been
now is able to assign
Airier by Leopold ai
"o\\ found an equiv
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ight reaches h2. No mass is added

W» follows:

fhe latter is nothing but the expression of the fact that an addition of material to a landscape
ill make its elevation proportionately higher, so that the last equation can be taken as an
vpression of the law of conservation of mass. It is clear that this must be so, since the analogy
fentropy in landscape evolution is justifiable (as shown by Scheidegger, 1964) by assuming that
ie process is a statistical one with mass being conserved.

Thus, the second principle leads to a further confirmation of the analogy postulated by
Leopold and Langbein (1962) and verifies the contention of Scheidegger (1964) that this analogy
. possible because mass must be conserved.

■j.(h2 -ht) \ h

constant average height ft_. An

u
til // drops from In to hi. We have

. The cycle is now closed and the
imics (i.e. its analog in the present

Fig. 2 — Carnot cycle in a landscape section.

- / ' , )

-//, log—- + h2 log —
£■1 * ^ 4 -

It is possible to illustrate the Carnot cycle, for instance, with a hypothetical "alluvial fan"
see fig. 2). The height // refers to the mid-point of the fan ("average height"). Of course, step 2
•not one that is likely to occur in nature without external action, but neither is the corre-
ronding step in gas-thermodynamics!

Since, in thermodynamics the Carnot process is one transforming work into heat (or icev
ersa), in our analogy it connects the variables IT and M.

L:
I ' l l

2 envisaged.
ics (i.e. its analogy in landscape

hermodynamic potentials

With the definition o\' IV. it is now possible to set up a complete analog to thermodynamic
unctions in landscape theory.

The "potential" U is defined by

dt7 = d.\/+dtr
Since we have been able to give a meaning to the quantity W in landscapes, it is clear that one
:ow is able to assign a meaning to the potential U. The analog of entropy, 5, was already defined
arlier by Leopold and Langbein; it is clear that all ordinary thermodynamic functions have
•ow found an equivalent in landscape theory. To recapitulate, we have (with x and y being
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(2i

jiere a- is the variance of both the dependent and independent series. The summation of the
.ross products can be written

, v \ . v 1 . v : + . Y 1 . \ - 3 - r . . . + . v 1 . v. v - i + A - 1 . Yv
I I xlXj =' ~ }<j 2 + A"2 X3 + X3 X4 + ... + A-2 A-A

o the first order Markov process

(3j

(4)

Hence
+ .vv_l.vv

v- i
£(I I x,*,) = <x2[I pk+ Ip„+.-+Ip„]f = 1 j = 2 f c = 1 k = l k = l

(7)

(8)

.ihere "a- is the Ath autocorrelation. For the second order Markov process oa- can be written as
Kendall: 1951)

ations which make up the record. If a
cates the amount of dependence among
he 50 observations are time dependent. :
not contribute as much information as | .»here
iuld contribute more information than |
)m events contribute more information I

ways true—under certain conditions \
V random events, and in some cases the
ic sample size N would indicate. The

i second order Markov process as given
it is possible to determine the effective

Pk =
</ sin(M + i//)

sin i// (9)

C-yf-b

cos (J =

tan i// = +c"
— C"

(10)

tan 8

iount of information as the N dependent here _ and b are lhe coeffiCients giveil in equati0n (I).
.1 the mean of the N dependent events, Vnv ,n can be reu riuen bv cxpandine sin (k0 , ,L
ndom events and solving tor A .

-v)]-
p k = c k c o t i / / s i l i k O + c k c o s k O ( 1 1 )

(5) | Sum up o„ over sin kO and coskd (Jolley: 1961), thus giving compact expressions for each
'•ummation in equation (8),

E ( Z I x i . x j ) = a 2 ( A + B ) ( 1 2 )
; ihere

~Ncs\nO-

A = cot i//

1 - 2ccos0 + c2
iV

i i = :
<j

A'.A

I X.X,)]i /=2■ <j
(6i (1 -2ccos0 + c2)2

[2c'v+2sin^'0-c*v+1 sini.V-f 1)0-
- c"v+3 sin (AT-1)0 + c(l-c2)sin0]
[1 -2ccost9 + c2J~1

rcN+3cos(N -1)0 - 2 cA *: cos N0 + cN +f cos (A' +1)0]
- c3 cos49 + Nc cost) - Nc2 - 2 Nc2 cos2 0 - ATc4 +

L+ 3 Nc3 cos 0 - c cos 9 + 2c2

(13)
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Hence

V a r ( x ) = — [ N o 1 + 2 a 2 ( A + £ ) ] { ] -
N

The effective number of observations A" is the number of random events whose variance of fy
mean equals the variance of the mean for a sequence of autocorrelated events.

The variance of the mean x' for the A" random events is

Va r ( * 0 = -

Equating (14) to (15) and solving for N',

A" = Ar 1 +-(A + B)
N

(15

(If

\VhenA/ = i
serial corre|

Summary

From t
•he negath
,(. are worl
ucld more
second or(
and geoch

Tables 1
-0.9 =So;
positive I
__ which
process.

-7 give values of A" for A'= 5, 10, 20, 30, 40, 50, 100 and for 0^e>=s0.9 ar,:
:<0.9. No negative values of oi are considered because hydrologic phenomena yiti;
irst order autocorrelations. The asterisks in the table represent certain values of o\ a_j

are inadmissable due to mathematical constraints on the second order Marin
These constraints are (Kendall: 1951),

P1-P1P2
- P i -

< 4 P i - P \
1-pJ

Pi -P i P i
' " P I

2 < 1

P i - P \ \ ( P i - P i P i f
\ -p \J 4( l -p2)2

< 1

(1?

It is evident from tables 1-7 that negative values of g_ yield high values of A7' such that JV'>\
Only for o2 — —0.1 are there some values of N' such that N' ^ N. In many cases N' is mud
greater than A', and as n* increases, so does N'. For example, when N = 30, oi =O.3,O2 = -0J
then N' = 850. That is, 30 dependent events are contributing as much information as 850randor.
events — a startling result indeed! This is an extreme situation, however. For a more realist*,
example let /V=30,oi = 0.3, g_= —0.2. Then N' = 31. One can speculate as to what is happenir:
to produce such high values of A'', and it would appear that the negative serial correlations a
responsible.

As an example of the effect negative serial correlation has on a system, consider theca
where g2 = of, so that the Markov process is first order. The effective sample size N' forth
process (Dawdy and Matalas: 1964) is

A" = N , 2 f N p l ( \ - p l ) - p l ( l - p ! i )
N \ ( 1 - p , ) 2

11-

Dawdy, D,
flandbc
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Prof. Pa
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I

N = 30», g_ =0.3 then A" = 24 But when <V-= 30 and Ql = -0.3, then A" - 54. The negative
correlation is adding more information than the positive serial correlation is taking Sway

MARY AND CONCLUSIONS

bmthe values of TV in tables 1-7, it would seem that for the second order Markov process
legative values of p. are working more for the investigator than the positive values of o' and
b working against him. That is, sequences generated by the second order Markov process

[more information than sequences generated by the first order Markov process-WhetherS
d order process could accomodate certain hydrologic time series, as well as meteorologfc

^eochronologic sequences, requires further research. mereoroiogic
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