System Robustness

Last updated: 2024/10/26, 09:33:07 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse System Robustness 1 of 43

Robustness

Self-Organized Criticality

These slides are brought to you by:

The PoCSverse System Robustness 2 of 43

Robustne

HOT theory

Self-Organized Criticality

COLD theory

Network robustne

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse System Robustness 3 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

Outline

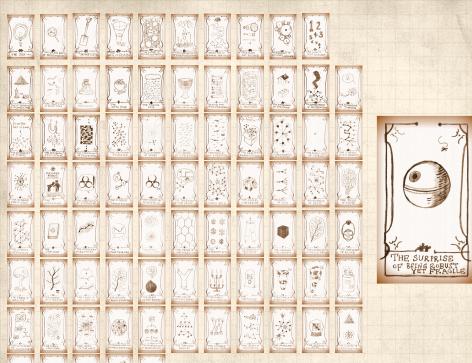
Robustness

HOT theory Random forests Self-Organized Criticality COLD theory Network robustness

References

The PoCSverse System Robustness 4 of 43

Robustness


HOT theory

Self-Organized Criticality

COLD theory

Network robustness

Outline

Robustness HOT theory

Random forests
Self-Organized Criticality
COLD theory
Network robustness

References

The PoCSverse System Robustness 6 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustness

Network robustr

Many complex systems are prone to cascading catastrophic failure:

The PoCSverse System Robustness 7 of 43

HOT theory

Self-Organized Criticality

Network robustness

Many complex systems are prone to cascading catastrophic failure: exciting!!!

The PoCSverse System Robustness 7 of 43

HOT theory

Self-Organized Criticality

Many complex systems are prone to cascading catastrophic failure: exciting!!!

Blackouts

The PoCSverse System Robustness 7 of 43

HOT theory

Self-Organized Criticality

Many complex systems are prone to cascading catastrophic failure: exciting!!!

Blackouts

Disease outbreaks

The PoCSverse System Robustness 7 of 43

HOT theory

Self-Organized Criticality

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Wildfires

The PoCSverse System Robustness 7 of 43

HOT theory

Self-Organized Criticality

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Wildfires
- Earthquakes

The PoCSverse System Robustness 7 of 43

HOT theory

Self-Organized Criticality

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- **Wildfires**
- Earthquakes
- Organisms, individuals and societies

The PoCSverse System Robustness 7 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

8

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Wildfires
- Earthquakes
- Organisms, individuals and societies
- **Ecosystems**

The PoCSverse System Robustness 7 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

8

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Wildfires
- Earthquakes
- Organisms, individuals and societies
- Ecosystems
- Cities Cities

The PoCSverse System Robustness 7 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

8

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Wildfires Wildfires
- Earthquakes
- Organisms, individuals and societies
- Ecosystems
- Cities Cities
- Myths: Achilles.

The PoCSverse System Robustness 7 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Wildfires
- Earthquakes
- Organisms, individuals and societies
- Ecosystems
- Cities Cities
- Myths: Achilles.

But complex systems also show persistent robustness

The PoCSverse System Robustness 7 of 43

HOT theory

Random forest

Self-Organized Criticality

Network robustne

References

2

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- **Wildfires**
- Earthquakes
- Organisms, individuals and societies
- Ecosystems
 - **Cities**
- Myths: Achilles.
- 8

But complex systems also show persistent robustness (not as exciting but important...)

The PoCSverse System Robustness 7 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

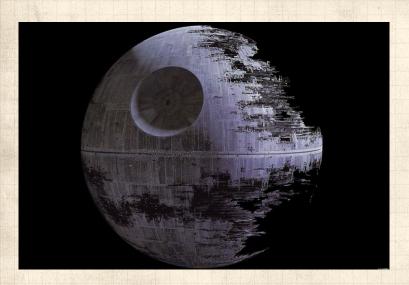
8

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- **Blackouts**
- Disease outbreaks
- **Wildfires**
- Earthquakes
- Organisms, individuals and societies
- Ecosystems
 - **Cities**
- Myths: Achilles.
- But complex systems also show persistent robustness (not as exciting but important...)
- 🙈 Robustness and Failure may be a power-law story...

The PoCSverse System Robustness 7 of 43

Robustness


HOT theory

Self-Organized Criticality

Network robustne

Our emblem of Robust-Yet-Fragile:

The PoCSverse System Robustness 8 of 43

Robustness

HOT theory

Random forests
Self-Organized Criticality

COLD theory Network robustness

"Trouble ..."

The PoCSverse System Robustness 9 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustness

System robustness may result from

The PoCSverse System Robustness 10 of 43

HOT theory

Self-Organized Criticality

Network robustness

System robustness may result from

1. Evolutionary processes

The PoCSverse System Robustness 10 of 43

HOT theory

Self-Organized Criticality

Network robustness

System robustness may result from

- 1. Evolutionary processes
- 2. Engineering/Design

The PoCSverse System Robustness 10 of 43

HOT theory

Self-Organized Criticality

Network robustness

System robustness may result from

- 1. Evolutionary processes
- 2. Engineering/Design

A Idea: Explore systems optimized to perform under uncertain conditions.

The PoCSverse System Robustness 10 of 43

HOT theory

Self-Organized Criticality

System robustness may result from

- 1. Evolutionary processes
- 2. Engineering/Design

A Idea: Explore systems optimized to perform under uncertain conditions.

The handle:

'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]

The PoCSverse System Robustness 10 of 43

HOT theory

Self-Organized Criticality

System robustness may result from

- 1. Evolutionary processes
- 2. Engineering/Design
- A Idea: Explore systems optimized to perform under uncertain conditions.
- The handle: 'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]
- The catchphrase: Robust yet Fragile

The PoCSverse System Robustness 10 of 43

HOT theory

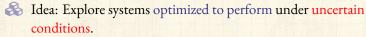
Self-Organized Criticality

System robustness may result from

- 1. Evolutionary processes
- 2. Engineering/Design
- A Idea: Explore systems optimized to perform under uncertain conditions.
- The handle: 'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]
- The catchphrase: Robust yet Fragile
- 🚵 The people: Jean Carlson and John Doyle 🗹

The PoCSverse System Robustness 10 of 43

HOT theory


Self-Organized Criticality

System robustness may result from

- 1. Evolutionary processes
- 2. Engineering/Design

The handle: 'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]

The catchphrase: Robust yet Fragile

🚵 The people: Jean Carlson and John Doyle 🗹

Great abstracts of the world #73: "There aren't any." [7]

The PoCSverse System Robustness 10 of 43

HOT theory

Self-Organized Criticality

Features of HOT systems: [5, 6]

The PoCSverse System Robustness 11 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

Network robustness

Features of HOT systems: [5, 6]

High performance and robustness

The PoCSverse System Robustness 11 of 43

HOT theory

Self-Organized Criticality

Network robustness

The PoCSverse System Robustness 11 of 43

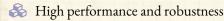
Robustness

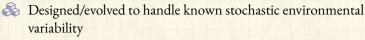
HOT theory

Self-Organized Criticality

COLD theory

References


Features of HOT systems: [5, 6]


High performance and robustness

Designed/evolved to handle known stochastic environmental variability

Features of HOT systems: [5, 6]

Fragile in the face of unpredicted environmental signals

The PoCSverse System Robustness 11 of 43

1CODUSTICS:

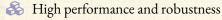
HOT theory Random forest

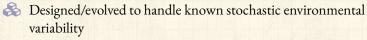
Self-Organized Criticality

Network robustne

The PoCSverse System Robustness 11 of 43

Robustness


HOT theory


Self-Organized Criticality

COLD theory

References

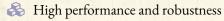
Features of HOT systems: [5, 6]

Regile in the face of unpredicted environmental signals

A Highly specialized, low entropy configurations

The PoCSverse System Robustness 11 of 43

Robustness


HOT theory

Self-Organized Criticality

Network robustnes

References

Features of HOT systems: [5, 6]

Designed/evolved to handle known stochastic environmental variability

Fragile in the face of unpredicted environmental signals

A Highly specialized, low entropy configurations

Power-law distributions appear (of course...)

HOT combines things we've seen:

Variable transformation

The PoCSverse System Robustness 12 of 43

HOT theory

Self-Organized Criticality

Network robustness

HOT combines things we've seen:

Variable transformation

Constrained optimization

The PoCSverse System Robustness 12 of 43

HOT theory

Self-Organized Criticality

HOT combines things we've seen:

Variable transformation

Constrained optimization

Need power law transformation between variables:

$$(Y = X^{-\alpha})$$

The PoCSverse System Robustness 12 of 43

HOT theory

Self-Organized Criticality

HOT combines things we've seen:

- Variable transformation
- Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...

The PoCSverse System Robustness 12 of 43

Robustiless

HOT theory Random forest

Self-Organized Criticality

Network robustne

HOT combines things we've seen:

- Variable transformation
- Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...
- MIWO is good

The PoCSverse System Robustness 12 of 43

Kobustiless

HOT theory Random forest

Self-Organized Criticality

Network robustr

HOT combines things we've seen:

- Variable transformation
- Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...
- MIWO is good: Mild In, Wild Out

The PoCSverse System Robustness 12 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustn

HOT combines things we've seen:

- Wariable transformation
- Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...
- 🙈 MIWO is good: Mild In, Wild Out

The PoCSverse System Robustness 12 of 43

Robustness

HOT theory Random forest

Self-Organized Criticality

Network robustne

Forest fire example: [5]

The PoCSverse System Robustness 13 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

Network robustness

 $^{^1}$ This is bad notation. Would be better to have N=L imes L

Forest fire example: [5]

 $\red {\$}$ Square $N \times N$ grid 1

The PoCSverse System Robustness 13 of 43

HOT theory

Self-Organized Criticality

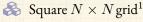
¹This is bad notation. Would be better to have $N=L\times L$

Forest fire example: [5]

 \Longrightarrow Square $N \times N$ grid¹

Sites contain a tree with probability ρ = density

The PoCSverse System Robustness 13 of 43


HOT theory

Self-Organized Criticality

¹This is bad notation. Would be better to have $N=L\times L$

Forest fire example: [5]

 \ref{Sites} Sites contain a tree with probability ho = density

Sites are empty with probability $1-\rho$

The PoCSverse System Robustness 13 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

 $^{^1}$ This is bad notation. Would be better to have N=L imes L

The PoCSverse System Robustness 13 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

References

Forest fire example: [5]

 $\red {\$}$ Square $N \times N \operatorname{grid}^1$

 $\red {
m s}$ Sites are empty with probability 1ho

 $\ensuremath{ \lessapprox}$ Fires start at location (i,j) according to some distribution P_{ij}

Secretary Secret

 $^{^1}$ This is bad notation. Would be better to have $N=L\times L$

The PoCSverse System Robustness 13 of 43

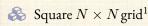
Robustness

HOT theory Random forests

Self-Organized Criticality

Network robustnes

References


Forest fire example: [5]

- $\red {\$}$ Square $N \times N \operatorname{grid}^1$
- Sites contain a tree with probability ρ = density
- $\red sites$ Sites are empty with probability 1ho
- $\ \, \ \, \ \, \ \,$ Fires start at location (i,j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)

See that the see t

 $^{^1}$ This is bad notation. Would be better to have $N=L\times L$

Forest fire example: [5]

 $\red {
m s}$ Sites are empty with probability 1ho

 $\ensuremath{ \lessapprox}$ Fires start at location (i,j) according to some distribution P_{ij}

Fires spread from tree to tree (nearest neighbor only)

& Connected clusters of trees burn completely

The PoCSverse System Robustness 13 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

References

 $^{^1}$ This is bad notation. Would be better to have $N=L\times L$

The PoCSverse System Robustness 13 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustnes

References

Forest fire example: [5]

- $\red {\$}$ Square $N \times N \operatorname{grid}^1$
- Sites contain a tree with probability ρ = density
- $\red sites$ Sites are empty with probability 1ho
- $\ \, \ \, \ \, \ \,$ Fires start at location (i,j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)
- & Connected clusters of trees burn completely
- & Empty sites block fire

The first term of the first te

¹This is bad notation. Would be better to have $N=L\times L$

The PoCSverse System Robustness 13 of 43

Robustness

HOT theory Random forests

Self-Organized Criticality

TVECWOIR TODUSTI

References

Forest fire example: [5]

- $\red {\$}$ Square $N \times N \operatorname{grid}^1$
- Sites contain a tree with probability ρ = density
- $\red {
 m s}$ Sites are empty with probability 1ho
- $\ \, \ \, \ \, \ \,$ Fires start at location (i,j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)
- & Connected clusters of trees burn completely
- Empty sites block fire
- Best case scenario:

 Build firebreaks to maximize average # trees left intact given one spark

And the second s

 $^{^1}$ This is bad notation. Would be better to have $N=L\times L$

Forest fire example: [5]

The PoCSverse System Robustness 14 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

Network robustness

Forest fire example: [5]

Build a forest by adding one tree at a time

The PoCSverse System Robustness 14 of 43

HOT theory

Self-Organized Criticality

Network robustness

Forest fire example: [5]

🙈 Build a forest by adding one tree at a time

The PoCSverse System Robustness 14 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

Network robustne

Forest fire example: [5]

Build a forest by adding one tree at a time

 \clubsuit Test D ways of adding one tree

The PoCSverse System Robustness 14 of 43

HOT theory

Self-Organized Criticality

COLD theory

Network robustnes

Forest fire example: [5]

- Build a forest by adding one tree at a time

- Average over P_{ij} = spark probability

The PoCSverse System Robustness 14 of 43

HOT theory

Self-Organized Criticality

Network robustnes

Forest fire example: [5]

- Build a forest by adding one tree at a time

- Average over P_{ij} = spark probability

The PoCSverse System Robustness 14 of 43

HOT theory

Random forests Self-Organized Criticality

Self-Organized Criticality
COLD theory

Network robustnes

Forest fire example: [5]

- 🙈 Build a forest by adding one tree at a time
- \clubsuit Test D ways of adding one tree
- Average over P_{ij} = spark probability

The PoCSverse System Robustness 14 of 43

reobustics

HOT theory Random forest

Self-Organized Criticality

Network robustne

Forest fire example: [5]

- 🙈 Build a forest by adding one tree at a time

- Average over P_{ij} = spark probability

Measure average area of forest left untouched

The PoCSverse System Robustness 14 of 43

HOT theory

Self-Organized Criticality

COLD theory

Network robustnes

Forest fire example: [5]

- Build a forest by adding one tree at a time
- A = D = design parameter
- Average over P_{ij} = spark probability

Measure average area of forest left untouched

f(c) = distribution of fire sizes c (= cost)

The PoCSverse System Robustness 14 of 43

HOT

HOT theory

Self-Organized Criticality

Network robustne

Forest fire example: [5]

- Build a forest by adding one tree at a time
- \clubsuit Test D ways of adding one tree
- A = D = design parameter
- Average over P_{ij} = spark probability

Measure average area of forest left untouched

- f(c) = distribution of fire sizes c (= cost)
- $\red{\$}$ Yield = $Y = \rho \langle c \rangle$

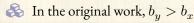
The PoCSverse System Robustness 14 of 43

reoblightess

HOT theory Random forest

Self-Organized Criticality

Network robustn


Specifics:

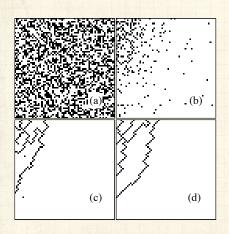
$$P_{ij} = P_{i;a_x,b_x} P_{j;a_y,b_y}$$

where

$$P_{i;a,b} \propto e^{-[(i+a)/b]^2}$$

Distribution has more width in y direction.

The PoCSverse System Robustness 15 of 43


HOT theory

Random forests

Self-Organized Criticality COLD theory

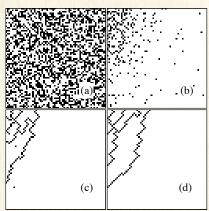
Network robustne

$$N = 64$$

- (a) D = 1
- (b) D = 2
- (c) D = N
- (d) $D = N^2$
- P_{ij} has an asymmetric, offset normal decay
- White square = tree
- Black square =

The PoCSverse System Robustness 16 of 43

Robustnes


HOT theory

Self-Organized Criticality

COLD theory

Network robustn

Optimized forests do well on average

N = 64

(a) D = 1

(b) D = 2

(c) D = N

 $(d) D = N^2$

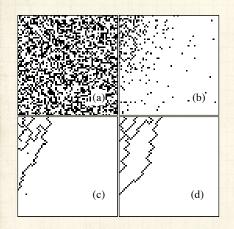
P_{ij} has an asymmetric, offset normal decay

White square = tree

Black square =

The PoCSverse System Robustness 16 of 43

Robustne


HOT theory

Self-Organized Criticality

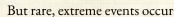
COLD theory

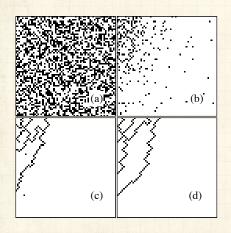
Network robustn

$$N = 64$$

- (a) D = 1
- (b) D = 2
- (c) D = N
- (d) $D = N^2$
- $Arr P_{ij}$ has an asymmetric, offset normal decay
- White square = tree
- Black square = no tree

The PoCSverse System Robustness 16 of 43


HOT theory


Self-Organized Criticality

References

Optimized forests do well on average

$$N = 64$$

- (a) D = 1
- (b) D = 2
- (c) D = N
- $(d) D = N^2$
- R_{ij} has an asymmetric, offset normal decay
- White square = tree
- Black square = no tree

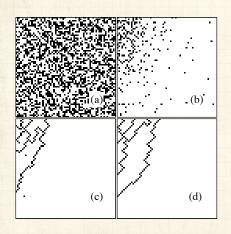
The PoCSverse System Robustness 16 of 43

Robustne

HOT theory

Self-Organized Criticality

COLD theory


References

Optimized forests do well on average (robustness)

But rare, extreme events occur

$$N = 64$$

- (a) D = 1
- (b) D = 2
- (c) D = N
- $(d) D = N^2$
- R_{ij} has an asymmetric, offset normal decay
- White square = tree
- Black square = no tree

Optimized forests do well on average (robustness)

But rare, extreme events occur (fragility)

The PoCSverse System Robustness 16 of 43

Robustnes

HOT theory

Self-Organized Criticality

COLD theory

HOT Forests

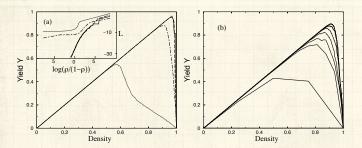


FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D=1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N=64, and (b) for D=2 and $N=2,2^2,\ldots,2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L=\log[\langle f \rangle/(1-\langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

The PoCSverse System Robustness 17 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustn

HOT Forests:

A Y= 'the average density of trees left unburned in a configuration after a single spark hits.' [5]

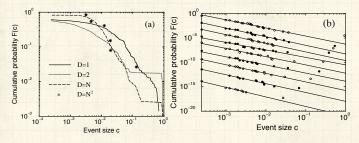


FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D = 1, 2, N, and N^2 with N = 64, and (b) for D = 1 N^2 , and N = 64 at equal density increments of 0.1, ranging at $\rho = 0.1$ (bottom curve) to $\rho = 0.9$ (top curve).

The PoCSverse System Robustness 18 of 43

HOT theory

Variable density story does not hold up:

HOT model simulations for:²

$$N = 64, D = N^2 = 4,096 \square \square$$

$$N = 128, D = N^2 = 16,384 \square \square$$

$$N = 256, D = N^2 = 65,536$$
 (symmetric)

$$N = 256, D = N^2 = 65,536 \text{ (skewed)}$$

- Density measure should be for forested part only.³
- Distribution is missing spike for size zero forests.
- Bistribution tail grows with tree addition.

The PoCSverse System Robustness 19 of 43

Kobustness

HOT theory Random forests

Self-Organized Criticality

Network robustnes

cererences

²Simulations and videos by David Matthews, PoCS 2020

³And it would be high, far above p_c

Outline

Robustness

HOT theory

Random forests

Self-Organized Criticality
COLD theory
Network robustness

References

The PoCSverse System Robustness 20 of 43

Robustness

HOT theory

Random forests
Self-Organized Criticality

COLD theory

Network robustness

Random Forests

D=1: Random forests = Percolation [11]

Randomly add trees.

The PoCSverse System Robustness 21 of 43

Robustness

HOT theory

Random forests

Self-Organized Criticality

COLD theory

Network robustness

D=1: Random forests = Percolation [11]

Randomly add trees.

& Below critical density ρ_c , no fires take off.

The PoCSverse System Robustness 21 of 43

Robustness

HOT theory

Random forests

Self-Organized Criticality

COLD theory

Network robustnes

The PoCSverse System Robustness 21 of 43

Robustness

HOT theory

Random forests

COLD theory

References

D=1: Random forests = Percolation [11]

Randomly add trees.

 \ref{Below} Below critical density $ho_{\rm c}$, no fires take off.

& Above critical density $ho_{
m c}$, percolating cluster of trees burns.

The PoCSverse System Robustness 21 of 43

Robustness

HOT theory

Random forests

COLD theory

References

D = 1: Random forests = Percolation [11]

- Randomly add trees.
- \ref{Below} Below critical density $ho_{\rm c}$, no fires take off.
- Above critical density $\rho_{\rm c}$, percolating cluster of trees burns.
- Only at ρ_c , the critical density, is there a power-law distribution of tree cluster sizes.

The PoCSverse System Robustness 21 of 43

Robustness

HOT theory

Random forests Self-Organized Critical

COLD theory

References

D = 1: Random forests = Percolation [11]

Randomly add trees.

 $\red{\&}$ Below critical density $ho_{\rm c}$, no fires take off.

Above critical density $\rho_{\rm c}$, percolating cluster of trees burns.

Only at ρ_c , the critical density, is there a power-law distribution of tree cluster sizes.

Forest is random and featureless.

A Highly structured.

Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).

The PoCSverse System Robustness 22 of 43

HOT theory Random forests

A Highly structured.

Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).

 $\mbox{\&}$ Claim: No specialness of $\rho_{\rm c}$ (oops).

The PoCSverse System Robustness 22 of 43

Random forests

A Highly structured.

Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).

 $\mbox{\&}$ Claim: No specialness of ρ_c (oops).

Forest states are tolerant.

The PoCSverse System Robustness 22 of 43

Random forests

A Highly structured.

Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).

 $\mbox{\&}$ Claim: No specialness of $\rho_{\rm c}$ (oops).

A Forest states are tolerant.

Uncertainty is okay if well characterized.

The PoCSverse System Robustness 22 of 43

Random forests

A Highly structured.

Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).

 $\mbox{\&}$ Claim: No specialness of ρ_c (oops).

A Forest states are tolerant.

Uncertainty is okay if well characterized.

 \Re If P_{ij} is characterized poorly or changes too fast, failure becomes highly likely.

The PoCSverse System Robustness 22 of 43

Random forests

- A Highly structured.
- Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).
- \mathcal{L} Claim: No specialness of ρ_c (oops).
- A Forest states are tolerant.
- Uncertainty is okay if well characterized.
- \Re If P_{ij} is characterized poorly or changes too fast, failure becomes highly likely.
- Growth is key to toy model which is both algorithmic and physical.

The PoCSverse System Robustness 22 of 43

Random forests

备 Highly structured.

Claim power law distribution of tree cluster sizes for a broad range of ρ , including below $\rho_{\rm c}$ (but model's dynamic growth path is odd).

 \Leftrightarrow Claim: No specialness of $\rho_{\rm c}$ (oops).

Forest states are tolerant.

Uncertainty is okay if well characterized.

If P_{ij} is characterized poorly or changes too fast, failure becomes highly likely.

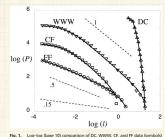
Growth is key to toy model which is both algorithmic and physical.

HOT theory is more general than just this toy model.

The PoCSverse System Robustness 22 of 43

Robustness

HOT theory


Random forests

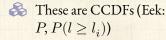
COLD theory

HOT forests—Real data:

"Complexity and Robustness," Carlson & Dolye [6]

with PLR models (solid lines) (for $\beta = 0$, 0.9, 0.9, 1.85, or $\alpha = 1/\beta = \infty$, 1.1,1.1, 0.054, respectively) and the SOC FF model ($\alpha = 0.15$, dashed). Reference lines of $\alpha = 0.5$. 1 (dashed) are included. The cumulative distributions of frequencies P(I ≥ I_i) vs. I_i describe the areas burned in the largest 4,284 fires from 1986 to 1995 on all of the U.S. Fish and Wildlife Service Lands (FF) (17), the >10,000 largest California brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston University during 1994 and 1995 (WWW) (19), and code words from DC. The size units [1,000 km2 (FF and CF), megabytes (WWW), and bytes (DC)] and the logarithmic decimation of the data are chosen for visualization.

PLR =probability-loss-resource.



Minimize cost subject to resource (barrier) constraints: $C = \sum_{i} p_{i} l_{i}$ given $l_i = f(r_i)$ and $\sum r_i \leq R$.

DC = Data Compression.

The PoCSverse System Robustness 23 of 43

Random forests

HOT forests—Real data:

"Complexity and Robustness," Carlson & Dolye [6]

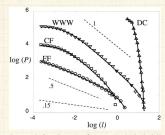
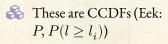



Fig. 1. Log-log (base 10) comparison of DC, WWW, CF, and FF data (symbols) with PR Moredis (sold lines) (of p = 0, 0, 9, 0, 3, 8, or a = 1), p = 1, 1,1,1,0,85, respectively) and the SOCF model (a = 0.15, dashed). Reference lines of a = 0.5, deshed). Reference lines of a = 0.5, deshed lines of a = 0.5, deshed). Reference lines of a = 0.5, deshed lines of

8

PLR = probability-loss-resource.

Minimize cost subject to resource (barrier) constraints: $C = \sum_i p_i l_i$ given

 $l_i = f(r_i)$ and $\sum r_i \le R$.

BC = Data Compression.

Horror: log. Screaming: "The base! What is the base!? You monsters!"

The PoCSverse System Robustness 23 of 43

Robustness

Random forests

Self-Organized Criticali

COLD theory

Network robustne

The abstract story, using figurative forest fires:

The PoCSverse System Robustness 24 of 43

Robustness

HOT theory

Random forests Self-Organized Criticality

COLD theory

Network robustness

The abstract story, using figurative forest fires:

 \mathfrak{S} Given some measure of failure size y_i and correlated resource size x_i with relationship $y_i = x_i^{-\alpha}$, $i = 1, ..., N_{\text{sites}}$.

The PoCSverse System Robustness 24 of 43

HOT theory Random forests

The abstract story, using figurative forest fires:

- Given some measure of failure size y_i and correlated resource size x_i with relationship $y_i = x_i^{-\alpha}, i = 1, \dots, N_{\text{sites}}$.
- \Leftrightarrow Design system to minimize $\langle y \rangle$ subject to a constraint on the x_i .
- Minimize cost:

$$C = \sum_{i=1}^{N_{\rm sites}} \mathbf{Pr}(y_i) y_i$$

The PoCSverse System Robustness 24 of 43

Robustness

Random forests

Self-Organized Criticalit

COLD theory

The abstract story, using figurative forest fires:

- Given some measure of failure size y_i and correlated resource size x_i with relationship $y_i=x_i^{-\alpha}, i=1,\ldots,N_{\text{sites}}.$
- Minimize cost:

$$C = \sum_{i=1}^{N_{\text{sites}}} \mathbf{Pr}(y_i) y_i$$

Subject to $\sum_{i=1}^{N_{\text{sites}}} x_i = \text{constant.}$

The PoCSverse System Robustness 24 of 43

Robustness

Random forests

Self-Organized Criticality

COLD theory

Network robustne

$$C_{\rm fire} \propto \sum_{i=1}^{N_{\rm sites}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

The PoCSverse System Robustness 25 of 43

Robustness

HOT theory

Random forests Self-Organized Criticality

COLD theory

Normark solution

$$C_{\rm fire} \propto \sum_{i=1}^{N_{\rm sites}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

The PoCSverse System Robustness 25 of 43

Robustness

HOT theory

Random forests

COLD theory

Network sobustne

$$C_{\rm fire} \propto \sum_{i=1}^{N_{\rm sites}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

The PoCSverse System Robustness 25 of 43

Robustness

HOT theory

Random forests

COLD theory

Network sobustne

$$C_{\rm fire} \propto \sum_{i=1}^{N_{\rm sites}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

We are assuming isometry.

The PoCSverse System Robustness 25 of 43

Robustness

HO1 theory

Random forests

COLD theory

Network robustnes

$$C_{\rm fire} \propto \sum_{i=1}^{N_{\rm sites}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls.

Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

- We are assuming isometry.
- In d dimensions, 1/2 is replaced by (d-1)/d

The PoCSverse System Robustness 25 of 43

Robustness

HOT theory

Random forests

COLD theory

Network robustnes

$$C_{\rm fire} \propto \sum_{i=1}^{N_{\rm sites}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

- We are assuming isometry.
- \bigcirc In d dimensions, 1/2 is replaced by (d-1)/d
- 3. Insert assignment question 2 to find:

$$\Pr(a_i) \propto a_i^{-\gamma}.$$

The PoCSverse System Robustness 25 of 43

Random forests

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) d\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$),

The PoCSverse System Robustness 26 of 43

HOT theory

Random forests

Self-Organized Criticality

COLD theory

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) d\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

The PoCSverse System Robustness 26 of 43

Robustness HOT theory

Random forests

Self-Organized Criticalit

COLD theory

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) d\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$\int R(\vec{x}) \mathrm{d}\vec{x} = \mathsf{c}$$

where c is a constant.

The PoCSverse System Robustness 26 of 43

Robustness

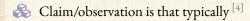
Random forests

Self-Organized Criticalit

COLD theory

74 A S 4 MS

1. Cost function:


$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) d\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$\int R(\vec{x}) d\vec{x} = c$$

where c is a constant.

$$V(\vec{x}) \sim R^{-\beta}(\vec{x})$$

The PoCSverse System Robustness 26 of 43

Robustness

Random forests

Self-Organized Criticalit

COLD theory

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) d\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$\int R(\vec{x}) d\vec{x} = c$$

where c is a constant.

& Claim/observation is that typically [4]

$$V(\vec{x}) \sim R^{-\beta}(\vec{x})$$

 $\begin{cases} \begin{cases} \begin{cases}$

The PoCSverse System Robustness 26 of 43

Robustness

Random forests

Self-Organized Criticalit

COLD theory

The HOT model in the wild

The PoCSverse System Robustness 27 of 43

Robustness

HOT theory

Random forests Self-Organized Criticality

COLD theory

Network robustness

Outline

Robustness

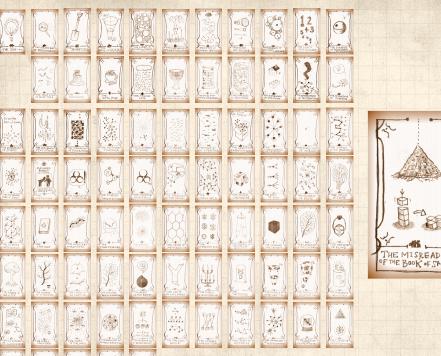
Random forests
Self-Organized Criticality

Network robustness

Reference

The PoCSverse System Robustness 28 of 43

Robustness


HOT theory

Self-Organized Criticality

COLD

Network robustness

SOC = Self-Organized Criticality

A Idea: natural dissipative systems exist at 'critical states';

The PoCSverse System Robustness 30 of 43

Robustness

HOT theory Random fores

Self-Organized Criticality

COLD theory

Network robustness

SOC = Self-Organized Criticality

A Idea: natural dissipative systems exist at 'critical states';

Analogy: Ising model with temperature somehow self-tuning;

The PoCSverse System Robustness 30 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustn

SOC = Self-Organized Criticality

A Idea: natural dissipative systems exist at 'critical states';

Analogy: Ising model with temperature somehow self-tuning;

Power-law distributions of sizes and frequencies arise 'for free';

The PoCSverse System Robustness 30 of 43

Robustness

Pandom force

Self-Organized Criticality

Network robustr

Network robustnes

SOC = Self-Organized Criticality

Idea: natural dissipative systems exist at 'critical states';

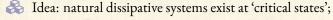
Analogy: Ising model with temperature somehow self-tuning;

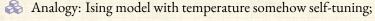
Power-law distributions of sizes and frequencies arise 'for free';

Introduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality - an explanation of 1/f noise" (PRL, 1987);

The PoCSverse System Robustness 30 of 43

Robustness


Random forests


Self-Organized Criticality

Network robustne

SOC = Self-Organized Criticality

Power-law distributions of sizes and frequencies arise 'for free';

Introduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality - an explanation of 1/f noise" (PRL, 1987);

Problem: Critical state is a very specific point;

The PoCSverse System Robustness 30 of 43

Robustness

HO1 theory

Self-Organized Criticality

COLD theory

rvetwork robustne

SOC theory

The PoCSverse System Robustness 30 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

References

SOC = Self-Organized Criticality

- Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- Introduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;

SOC theory

The PoCSverse System Robustness 30 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustne

References

SOC = Self-Organized Criticality

- Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- Mintroduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;
- Much criticism and arguing...

Avalanches of Sand and Rice ...

The PoCSverse System Robustness 31 of 43

Robustne

HOT theory

Self-Organized Criticality

COLD theory

Network robustness

Carlson and Doyle, Proc. Natl. Acad. Sci., 99, 2538-2545, 2002. [6]

HOT versus SOC

Both produce power laws

The PoCSverse System Robustness 32 of 43

HOT theory

Self-Organized Criticality

Carlson and Doyle, Proc. Natl. Acad. Sci., 99, 2538-2545, 2002. [6]

HOT versus SOC

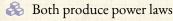
Both produce power laws

Optimization versus self-tuning

The PoCSverse System Robustness 32 of 43

Robustness

HOT theory


Self-Organized Criticality

Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. ^[6]

HOT versus SOC

Optimization versus self-tuning

Claim: HOT systems viable over a wide range of high densities (false)

The PoCSverse System Robustness 32 of 43

Robustness

HO1 theory

Self-Organized Criticality

Normark salamana

Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. ^[6]

HOT versus SOC

Both produce power laws

Optimization versus self-tuning

Claim: HOT systems viable over a wide range of high densities (false)

True: SOC systems have one special density

The PoCSverse System Robustness 32 of 43

Robustness

HOT theory

Self-Organized Criticality

Norwark robustness

Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. ^[6]

HOT versus SOC

- Both produce power laws
- Optimization versus self-tuning
- Claim: HOT systems viable over a wide range of high densities (false)
- Record True: SOC systems have one special density
- HOT systems produce specialized structures

The PoCSverse System Robustness 32 of 43

Robustness

HOT theory

Self-Organized Criticality

Norwark robustness

Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. ^[6]

HOT versus SOC

- Both produce power laws
- Optimization versus self-tuning
- Claim: HOT systems viable over a wide range of high densities (false)
- Record True: SOC systems have one special density
- A HOT systems produce specialized structures
- SOC systems produce generic structures

The PoCSverse System Robustness 32 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustnes

HOT theory—Summary of designed tolerance [6]

Table 1. Characteristics of SOC, HOT, and data

	Property	SOC	HOT and Data
1	Internal configuration	Generic, homogeneous, self-similar	Structured, heterogeneous, self-dissimilar
2	Robustness	Generic	Robust, yet fragile
3	Density and yield	Low	High
4	Max event size	Infinitesimal	Large
5	Large event shape	Fractal	Compact
6	Mechanism for power laws	Critical internal fluctuations	Robust performance
7	Exponent α	Small	Large
8	α vs. dimension d	$\alpha \approx (d-1)/10$	$\alpha \approx 1/d$
9	DDOFs	Small (1)	Large (∞)
10	Increase model resolution	No change	New structures, new sensitivities
11	Response to forcing	Homogeneous	Variable

The PoCSverse System Robustness 33 of 43

Robustness

HOT theory

Self-Organized Criticality

Network robustness

Robustness and narrative causality: 🖽 🗗

Robust-yet-fragile, enstoried.4

The PoCSverse System Robustness 34 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

Network robustness

⁴See also: Achilles 🖸

Outline

Robustness

Random forests
Self-Organized Criticality
COLD theory

Keterence

The PoCSverse System Robustness 35 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD theory

Network robustness

Avoidance of large-scale failures

& Constrained Optimization with Limited Deviations [9]

The PoCSverse System Robustness 36 of 43

HOT theory

Self-Organized Criticality

COLD theory

Avoidance of large-scale failures

& Constrained Optimization with Limited Deviations [9]

Weight cost of larges losses more strongly

The PoCSverse System Robustness 36 of 43

HOT theory

Self-Organized Criticality

COLD theory

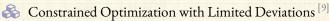
Avoidance of large-scale failures

Constrained Optimization with Limited Deviations [9]

Weight cost of larges losses more strongly

Increases average cluster size of burned trees...

The PoCSverse System Robustness 36 of 43


HOT theory

Self-Organized Criticality

COLD theory

Avoidance of large-scale failures

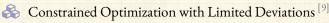
Weight cost of larges losses more strongly

Increases average cluster size of burned trees...

& ... but reduces chances of catastrophe

The PoCSverse System Robustness 36 of 43

Robustness


Pandom forces

Self-Organized Criticality

COLD theory

Avoidance of large-scale failures

Weight cost of larges losses more strongly

Increases average cluster size of burned trees...

🙈 ... but reduces chances of catastrophe

Power law distribution of fire sizes is truncated

The PoCSverse System Robustness 36 of 43

Robustness

Pandom forces

Self-Organized Criticality

COLD theory

Network robustne

Cutoffs

Observed:

Power law distributions often have an exponential cutoff

$$P(x) \sim x^{-\gamma} e^{-x/x_c}$$

where x_c is the approximate cutoff scale.

The PoCSverse System Robustness 37 of 43

HOT theory

Self-Organized Criticality

COLD theory

Cutoffs

Observed:

Power law distributions often have an exponential cutoff

$$P(x) \sim x^{-\gamma} e^{-x/x_c}$$

where x_c is the approximate cutoff scale.

May be Weibull distributions:

$$P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$$

The PoCSverse System Robustness 37 of 43

HOT theory

Self-Organized Criticality

COLD theory

Outline

Robustness

HOT theory
Random forests
Self-Organized Criticality
COLD theory

Network robustness

Reference

The PoCSverse System Robustness 38 of 43

Robustness

HOT theory

Self-Organized Criticality

COLD

Network robustness

Robustness

We'll return to this later on (maybe):

- Network robustness.
- Albert et al., Nature, 2000: "Error and attack tolerance of complex networks" [1]
- General contagion processes acting on complex networks. [13, 12]
- 🙈 Similar robust-yet-fragile stories ...

The PoCSverse System Robustness 39 of 43

Robustness

HOT theory

Candom forests

Self-Organized Criticality

Network robustness

. .

References I

[1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378–382, 2000. pdf

[2] P. Bak.

How Nature Works: the Science of Self-Organized

Criticality.

Springer-Verlag, New York, 1997.

- [3] P. Bak, C. Tang, and K. Wiesenfeld.
 Self-organized criticality an explanation of 1/f noise.
 Phys. Rev. Lett., 59(4):381–384, 1987. pdf
- [4] J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412–1427, 1999. pdf

The PoCSverse System Robustness 40 of 43

Robustness

HO I theory

Self-Organized Criticalis

Normark saluate

References II

[5] J. M. Carlson and J. Doyle. Highly Optimized Tolerance: Robustness and design in complex systems.

Phys. Rev. Lett., 84(11):2529-2532, 2000. pdf

- [6] J. M. Carlson and J. Doyle.

 Complexity and robustness.

 Proc. Natl. Acad. Sci., 99:2538–2545, 2002. pdf
- [7] J. Doyle.

 Guaranteed margins for LQG regulators.

 IEEE Transactions on Automatic Control, 23:756–757, 1978. pdf

The PoCSverse System Robustness 41 of 43

Robustness

Pandom form

Self-Organized Criticality

Norwork sobuern

References III

[8] H. J. Jensen.

Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems.

Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge, UK, 1998.

[9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.

[10] D. Sornette.

Critical Phenomena in Natural Sciences.

Springer-Verlag, Berlin, 1st edition, 2003.

[11] D. Stauffer and A. Aharony.
 Introduction to Percolation Theory.
 Taylor & Francis, Washington, D.C., Second edition, 1992.

The PoCSverse System Robustness 42 of 43

Robustness

HOT theory

Self-Organized Criticalit

Network robustr

References IV

[12] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441–458, 2007. pdf

[13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf

The PoCSverse System Robustness 43 of 43

Robustness

Pandom forces

Self-Organized Criticality

COLD theory

