System Robustness

Last updated: 2024/10/26. 09:33:30 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024–2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International 🖉

Outline

HOT theory Random forests Self-Organized Criticality COLD theory Network robustness

References

Robustness

- A Many complex systems are prone to cascading catastrophic failure: exciting!!!
 - **Blackouts**
 - Disease outbreaks
 - Wildfires
 - Earthquakes
 - Organisms, individuals and societies
 - Ecosystems
 - Cities
 - Myths: Achilles.
- But complex systems also show persistent robustness (not as exciting but important...)
- 🗞 Robustness and Failure may be a power-law story...

Our emblem of Robust-Yet-Fragile: System Robustness 1 of 38

The PoCSverse

Robustness

The PoCSverse

2 of 38

Robustness

The PoCSvers

Robustness

HOT theory

System Robustness 5 of 38

System Robustnes

Robustness

- System robustness may result from 1. Evolutionary processes 2. Engineering/Design
- A Idea: Explore systems optimized to perform under uncertain conditions.
- 'Highly Optimized Tolerance' (HOT)^[4, 5, 6, 10]

Robustness

Features of HOT systems: [5, 6]

- 🗞 High performance and robustness
- losigned/evolved to handle known stochastic environmental variability
- Fragile in the face of unpredicted environmental signals
- Highly specialized, low entropy configurations
- Power-law distributions appear (of course...)

The PoCSverse Robustness

System Robustness 6 of 38 Robustness HOT theory Random forests Self-Organized Criticali COLD theory

- References
- A Variable transformation 🗞 Constrained optimization

HOT combines things we've seen:

- Need power law transformation between variables: $(Y = X^{-\alpha})$
- 🗞 Recall PLIPLO is bad...
- 🚳 MIWO is good: Mild In, Wild Out
- 🗞 X has a characteristic size but Y does not

Robustness System Robustness 7 of 38

Robustness HOT theory Network robustn

The PoCSverse

- \bigotimes Square $N \times N$ grid¹
- Sites contain a tree with probability ρ = density
- Sites are empty with probability 1ρ
- \mathfrak{F} Fires start at location (i, j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)
- 🗞 Connected clusters of trees burn completely
- 🗞 Empty sites block fire

Forest fire example: ^[5]

- 🚷 Best case scenario:
 - Build firebreaks to maximize average # trees left intact given one spark

1 This is bad notation. Would be better to have N=L imes L

🗞 Build a forest by adding one tree at a time

Robustness

8 of 38 Robustness HOT theory Random forests

The PoCSverse

System Robustness

References

🗞 Test D ways of adding one tree $\gg D = \text{design parameter}$

- Average over P_{ii} = spark probability
- A D = 1: random addition

Forest fire example: ^[5]

 $\bigotimes D = N^2$: test all possibilities

Measure average area of forest left untouched

 $\Re f(c) = \text{distribution of fire sizes } c (= \text{cost})$ \clubsuit Yield = $Y = \rho - \langle c \rangle$

The PoCSverse System Robustness 11 of 38 Robustness HOT theory Random forests Self-Organized

The PoCSverse System Robustness 9 of 38 Robustness HOT theory Random forests

The PoCSverse

10 of 38

Robustness

HOT theory Random forests

Self-Organized O COLD theory

System Robustness

Robustness

- \Lambda The handle:
- The catchphrase: Robust yet Fragile
- 🚯 The people: Jean Carlson and John Doyle 🗹

🗞 Great abstracts of the world #73: "There aren't any." [7]

Robustness

Specifics:

$$P_{ij} = P_{i;a_x,b_x}P_{j;a_y,b_y}$$

where

$$P_{i:a,b} \propto e^{-[(i+a)/b]^2}$$

- \bigotimes In the original work, $b_u > b_r$
- \bigotimes Distribution has more width in *y* direction.

The PoCSverse HOT Forests: System Robustness 12 of 38

HOT theory

The PoCSverse

Robustness

HOT theory Random forest

The PoCSverse

14 of 38

Robustnes

HOT theory

System Robustness

System Robustness 13 of 38

 \Re Y= 'the average density of trees left unburned in a configuration after a single spark hits." [5]

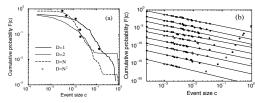


FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D = 1, 2, N, and N^2 with N = 64, and (b) for D = N^2 , and N = 64 at equal density increments of 0.1, ranging at $\rho = 0.1$ (bottom curve) to $\rho = 0.9$ (top curve).

Variable density story does not hold up:

 $N = 64, D = N^2 = 4,096$ $N = 128, D = N^2 = 16,384$

Density measure should be for forested part only.³

- A Distribution is missing spike for size zero forests.

²Simulations and videos by David Matthews, PoCS 2020 ³And it would be high, far above p_c

Random Forests

- D = 1: Random forests = Percolation^[11]
- 🗞 Randomly add trees.
- Below critical density ρ_c , no fires take off.
- Above critical density ρ_c , percolating cluster of trees burns. Solution Only at ρ_c , the critical density, is there a power-law
- distribution of tree cluster sizes.
- Forest is random and featureless.

HOT forests nutshell: System Robustness 15 of 38

The PoCSverse

HOT theory Random forest

References

The PoCSverse

Robustness

HOT theory Random forests

Self-Organized Cri

The PoCSvers

18 of 38

Robustness

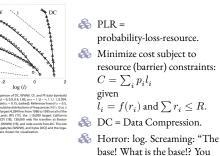
HOT theory

Random forests Self-Organized C

References

System Robustness

System Robustnes 16 of 38


🗞 Highly structured.

🗞 Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).

- & Claim: No specialness of ρ_c (oops).
- Sorrest states are tolerant.
- locertainty is okay if well characterized.
- \bigotimes If P_{ij} is characterized poorly or changes too fast, failure becomes highly likely.
- Rowth is key to toy model which is both algorithmic and physical.
- HOT theory is more general than just this toy model.

HOT forests-Real data:

"Complexity and Robustness," Carlson & Dolye [6]

monsters!"

These are CCDFs (Eek: $P, P(l \ge l_i))$

HOT theory:

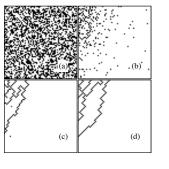
The PoCSverse

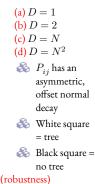
Robustness

Random forests

System Robustnes 20 of 38

The abstract story, using figurative forest fires:


- Given some measure of failure size y_i and correlated resource size x_i with relationship $y_i = x_i^{-\alpha}$, $i = 1, ..., N_{\text{sites}}$.
- \bigotimes Design system to minimize $\langle y \rangle$ subject to a constraint on the x_i .
- \lambda Minimize cost:


$$C = \sum_{i=1}^{N_{\rm sites}} \Pr(y_i) y_i$$

Subject to $\sum_{i=1}^{N_{\text{sites}}} x_i = \text{constant.}$

The PoCSverse System Robustness 19 of 38 Robustness Random forests

HOT Forests ^[5]

N = 64

- Optimized forests do well on average (robustness)
- But rare, extreme events occur (fragility)

HOT Forests

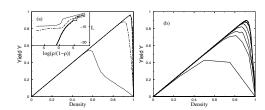


FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D =1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N = 64, and (b) for D = 2 and $N = 2, 2^2, ..., 2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L = \log[\langle f \rangle / (1 - \langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

- HOT model simulations for:²
- $N = 256, D = N^2 = 65,536$ (symmetric) $N = 256, D = N^2 = 65,536 \text{ (skewed)} \blacksquare \square$

- Distribution tail grows with tree addition.

1. Cost: Expected size of fire:

Continuum version:

1. Cost function:

2. Constraint:

SOC theory

where c is a constant.

Claim/observation is that typically [4]

For spatial systems with barriers: $\beta = d$.

 $C_{\rm fire} \propto \sum_{i=1}^{N_{\rm sites}} p_i a_i.$

 a_i = area of *i*th site's region, and p_i = avg. prob. of fire at *i*th site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

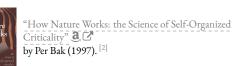
 $C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$

We are assuming isometry. ♥ In d dimensions, 1/2 is replaced by (d-1)/d3. Insert assignment question 🗹 to find:

 $\mathbf{Pr}(a_i) \propto a_i^{-\gamma}$

 $\langle C \rangle = \int C(\vec{x}) p(\vec{x}) \mathrm{d}\vec{x}$

where C is some cost to be evaluated at each point in space \vec{x}


 $\int R(\vec{x}) d\vec{x} = c$

 $V(\vec{x}) \sim R^{-\beta}(\vec{x})$


(e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs

position \vec{x} with a sharpened stick (or equivalent).

Avalanches of Sand and Rice ...

23 of 38

The PoCSvers

26 of 38

Robustnes

Self-Organized Criticality

"Complexity and robustness" 🗹 Carlson and Dovle,

- Both produce power laws
- Optimization versus self-tuning
- 🗞 Claim: HOT systems viable over a wide range of high densities (false)
- A HOT systems produce specialized structures
- SOC systems produce generic structures

HOT theory—Summary of designed tolerance ^[6] System Robustness

Table 1. Characteristics of SOC, HOT, and data

Property

Internal

configuration

Robustness

Density and yield

Max event size

Large event shape

Mechanism for

power laws

Exponent a

 α vs. dimension α

DDOFs

Increase mode

resolution

Response to

forcina

1

2

3

4

5

6

7

8

9

10

11

SOC =	Self-C	rganized	Critical	ity
-------	--------	----------	----------	-----

- A Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Rever-law distributions of sizes and frequencies arise 'for free';
- 🚯 Introduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality - an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;
- Much criticism and arguing...

The PoCSverse System Robustness 31 of 38 Robustness HOT theory COLD theory Network robust References

Avoidance of large-scale failures

- Sconstrained Optimization with Limited Deviations [9]
- 🗞 Weight cost of larges losses more strongly
- lncreases average cluster size of burned trees...
- line with the second se
- Power law distribution of fire sizes is truncated

Cutoffs

Observed:

Representation of the second s

 $P(x) \sim x^{-\gamma} e^{-x/x_c}$

where x_c is the approximate cutoff scale. A May be Weibull distributions:

 $P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$

We'll return to this later on (maybe):

A Network robustness.

Robustness

Albert et al., Nature, 2000:

"Error and attack tolerance of complex networks" [1]

- 🗞 General contagion processes acting on complex networks. [13, 12]
- 🚳 Similar robust-yet-fragile stories ...

The PoCSvers System Robustness 34 of 38 Robustness Network robustness R eferences

Proc. Natl. Acad. Sci., 99, 2538-2545, 2002. [6]

HOT versus SOC

- True: SOC systems have one special density

SOC

Generic,

homogeneous

self-similar

Generic

Low

Infinitesimal

Fractal

Critical interna

fluctuations

Small

 $\alpha \approx (d-1)/10$

Small (1)

No change

Homogeneous

HOT and Data

Structured,

heterogeneous.

self-dissimilar

Robust, vet

fragile

High

Large

Compact

Robust

performance

Large

 $\alpha \approx 1/d$

Large (∞)

New structures

new sensitivities

Variable

The PoCSverse 28 of 38

System Robustnes Robustness

The PoCSvers

29 of 38

Robustness

System Robustness

Self-Organized Criticality

The PoCSverse

Robustness

HOT theory

References

System Robustness 27 of 38

Self-Organized Criticality

COLD theory Network robust

Self-Organized Criticality

References I

- [1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378-382, 2000. pdf 🗹
- [2] P. Bak. How Nature Works: the Science of Self-Organized Criticality. Springer-Verlag, New York, 1997.
- [3] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality - an explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987. pdf
- [4] J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412–1427, 1999. pdf 🗹

References II [5] J. M. Carlson and J. Doyle. Highly Optimized Tolerance: Robustness and design in complex systems.

Phys. Rev. Lett., 84(11):2529-2532, 2000. pdf 🗹

[6] J. M. Carlson and J. Doyle. Complexity and robustness. Proc. Natl. Acad. Sci., 99:2538-2545, 2002. pdf 🗹

[7] J. Doyle.

Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control, 23:756-757, 1978. pdf 🗹

References III System Robustness 35 of 38

The PoCSverse

Robustness HOT theory

Self-Organized Critic

References

- [8] H. J. Jensen. Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems.
 - Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge, UK, 1998.
- [9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.
- [10] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003
- [11] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor & Francis, Washington, D.C., Second edition, 1992.

References IV System Robustness 37 of 38

The PoCSverse

Robustness

HOT theory

References

Self-Organized Critical COLD theory

The PoCSverse System Robustness 38 of 38 Robustness HOT theory Random forests Self-Organized C COLD theory References

- [12] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441–458, 2007. pdf 🗹
- [13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf 🗹

Robustness Self-Organized Critis COLD theory References

The PoCSverse

System Robustness 36 of 38