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https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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These slides are also brought to you by:

Special Guest Executive Producer

�On Instagram at pratchett_the_cat�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://www.instagram.com/pratchett_the_cat/
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Two of the many things we struggle with cognitively:
1. Probability.
� Ex. TheMonty Hall Problem.�
� Ex. Daughter/Son born on Tuesday.�

(see next two slides; Wikipedia entry here�.)

2. Logarithmic scales.

On counting and logarithms:

� Listen to Radiolab’s 2009 piece:
“Numbers.”�.

� Later: Benford’s Law�.

Also to be enjoyed: The Dunning-Kruger effect�1

12000 Ig Nobel winners�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.sciencenews.org/view/generic/id/60598/title/When_intuition_and_math_probably_look_wrong
http://en.wikipedia.org/wiki/Boy_or_Girl_paradox
http://www.radiolab.org/2009/nov/30/
http://en.wikipedia.org/wiki/Benford's_law
https://en.wikipedia.org/wiki/Dunning–Kruger_effect
https://improbable.com/ig/winners/#ig2000
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Homo probabilisticus?

The set up:

� A parent has two children.

Simple probability question:

� What is the probability that both children are girls?

� ?

The next set up:

� A parent has two children.
� We know one of them is a girl.

The next probabilistic poser:

� What is the probability that both children are girls?

� ?

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Try this one:

� A parent has two children.
� We know one of them is a girl born on a Tuesday.

Simple question #3:

� What is the probability that both children are girls?

� ?

Last:

� A parent has two children.
� We know one of them is a girl born on December 31.

And …

� What is the probability that both children are girls?

� ?

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Let’s test our collective intuition:

Money
≡

Belief

Two questions about wealth distribution in the United
States:

1. Please estimate the percentage of all wealth owned by
individuals when grouped into quintiles.

2. Please estimate what you believe each quintile should own,
ideally.

3. Extremes: 100, 0, 0, 0, 0 and 20, 20, 20, 20, 20.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Wealth distribution in the United States: [13]

“Building a better America—One wealth quintile at a time”
Norton and Ariely, 2011. [13]
But: Fraud.�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://en.wikipedia.org/wiki/Dan_Ariely
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Wealth distribution in the United States: [13]

� A highly watched video based on this research is here.�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://www.youtube.com/watch?v=QPKKQnijnsM
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The Boggoracle Speaks:��

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2018-09-10pocs-boggle-heavy-tails.mp4
https://pdodds.w3.uvm.edu/videos/2018-09-10pocs-boggle-heavy-tails.mp4
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The Boggoracle Speaks:��

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2018-09-10pocs-boggle-power-laws.mp4
https://pdodds.w3.uvm.edu/videos/2018-09-10pocs-boggle-power-laws.mp4
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The sizes of many systems’ elements appear to obey an
inverse power-law size distribution:

𝑃 (size = 𝑥) ∼ 𝑐 𝑥−𝛾

where 0 < 𝑥min < 𝑥 < 𝑥max and 𝛾 > 1.

� 𝑥min = lower cutoff, 𝑥max = upper cutoff

� Negative linear relationship in log-log space:

log
10

𝑃(𝑥) = log
10

𝑐 − 𝛾log
10

𝑥

� We use base 10 because we are good people.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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The sizes of many systems’ elements appear to obey an
inverse power-law size distribution:

𝑃 (size = 𝑥) ∼ 𝑐 𝑥−𝛾

where 0 < 𝑥min < 𝑥 < 𝑥max and 𝛾 > 1.

� 𝑥min = lower cutoff, 𝑥max = upper cutoff

� Negative linear relationship in log-log space:

log
10

𝑃(𝑥) = log
10

𝑐 − 𝛾log
10

𝑥

� We use base 10 because we are good people.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Size distributions:

Usually, only the tail of the distribution obeys a power law:

𝑃(𝑥) ∼ 𝑐 𝑥−𝛾 for 𝑥 large.

� Still use term ‘power-law size distribution.’
� Other terms:

� Fat-tailed distributions.
� Heavy-tailed distributions.

Beware:
� Inverse power laws aren’t the only ones:

lognormals�, Weibull distributions�, …

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Weibull_distribution
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Size distributions:

Many systems have discrete sizes 𝑘:
� Word frequency

� Node degree in networks: # friends, # hyperlinks, etc.
� # citations for articles, court decisions, etc.

𝑃(𝑘) ∼ 𝑐 𝑘−𝛾

where 𝑘min ≤ 𝑘 ≤ 𝑘max

� Obvious fail for 𝑘 = 0.
� Again, typically a description of distribution’s tail.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Word rank and frequency:
Brown Corpus� (∼ 106 words):
rank word % q
1. the 6.8872
2. of 3.5839
3. and 2.8401
4. to 2.5744
5. a 2.2996
6. in 2.1010
7. that 1.0428
8. is 0.9943
9. was 0.9661
10. he 0.9392
11. for 0.9340
12. it 0.8623
13. with 0.7176
14. as 0.7137
15. his 0.6886

rank word % q
1945. apply 0.0055
1946. vital 0.0055
1947. September 0.0055
1948. review 0.0055
1949. wage 0.0055
1950. motor 0.0055
1951. fifteen 0.0055
1952. regarded 0.0055
1953. draw 0.0055
1954. wheel 0.0055
1955. organized 0.0055
1956. vision 0.0055
1957. wild 0.0055
1958. Palmer 0.0055
1959. intensity 0.0055

Later: Connect rankings and size distributions.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Brown_Corpus
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Jonathan Harris’s (not quite dead) Wordcount:�
Aword frequency distribution explorer:

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://wordcount.org
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“Thing Explainer: Complicated Stuff in SimpleWords
”��
by Randall Munroe (2015). [11]

Up goer five�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://www.amazon.com/dp/0544668251/
http://www.amazon.com/dp/0544668251/
http://www.amazon.com/dp/0544668251/
https://xkcd.com/1133
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Function words matter:��

Let’s call everything the same (no)thing�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2017-10-13aladeen-function-words.mp4
https://pdodds.w3.uvm.edu/videos/2017-10-13aladeen-function-words.mp4
https://www.nytimes.com/2023/07/23/business/elon-musk-twitter-logo.html
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The long tail of knowledge:

Take a scrolling voyage

to the citational abyss,
starting at the surface with
the lonely, giant citaceans,
moving down
to the legion of strange,
sometimes misplaced,
unloved creatures,
that dwell in
Kahneman’s Google Scholar page�

� Papers are the events, size is the number of citations
� Natural to order by size or publication date.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://scholar.google.com/citations?user=ImhakoAAAAAJ
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The statistics of surprise—words:

First—a Gaussian example:

𝑃(𝑥)d𝑥 = 1√
2𝜋𝜎

𝑒−(𝑥−𝜇)2/2𝜎2d𝑥

linear:

0 5 10 15 20
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P
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)

log-log
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x
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g 1

0
P

(x
)

mean 𝜇 = 10, variance 𝜎2 = 1.

� Activity: Sketch 𝑃(𝑥) ∼ 𝑥−1 for 𝑥 = 1 to 𝑥 = 107.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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The statistics of surprise—words:

Raw ‘probability’ (binned) for Brown Corpus:

linear:

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

q

N
q

� 𝑞𝑤 = normalized frequency of occurrence of word𝑤 (%).
� 𝑁𝑞 = number of distinct words that have a normalized

frequency of occurrence 𝑞.
� e.g, 𝑞the ≃ 6.9%,𝑁𝑞the = 1.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Raw ‘probability’ (binned) for Brown Corpus:

linear:
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� 𝑞𝑤 = normalized frequency of occurrence of word𝑤 (%).
� 𝑁𝑞 = number of distinct words that have a normalized

frequency of occurrence 𝑞.
� e.g, 𝑞the ≃ 6.9%,𝑁𝑞the = 1.
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The statistics of surprise—words:

Complementary Cumulative Distribution (for frequency or
probability)𝑁≥𝑞:

linear:
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� Also known as the ‘Exceedance Probability.’

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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My, what big words you have …

� Test� capitalizes on word frequency following a heavily
skewed frequency distribution with a decaying power-law tail.

� This Man Can Pronounce Every Word in the Dictionary�
(story here�)

� Best of Dr. Bailly�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://testyourvocab.com/
https://www.youtube.com/watch?v=3DxMSufIIqY
https://www.greatbigstory.com/stories/the-official-pronouncer-of-the-scripps-national-spelling-bee
https://www.youtube.com/watch?v=Nfa80vMQn6c
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The statistics of surprise:

Gutenberg-Richter law�

� Log-log plot
� Base 10
� Slope = -1
𝑁(𝑀 > 𝑚) ∝ 𝑚−1

� From both the very awkwardly similar Christensen et al. and
Bak et al.:
“Unified scaling law for earthquakes” [4, 1]

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Gutenberg-Richter_law
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The statistics of surprise:

From: “Quake Moves Japan Closer to U.S. and Alters Earth’s
Spin”� by Kenneth Chang, March 13, 2011, NYT:
‘What is perhaps most surprising about the Japan earthquake is
howmisleading history can be.

In the past 300 years, no
earthquake nearly that large—nothing larger than magnitude
eight—had struck in the Japan subduction zone. That, in turn,
led to assumptions about how large a tsunami might strike the
coast.’

“‘It did them a giant disservice,” said Dr. Stein of the geological
survey. That is not the first time that the earthquake potential of a
fault has been underestimated. Most geophysicists did not think
the Sumatra fault could generate a magnitude 9.1 earthquake, …’

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://www.nytimes.com/2011/03/14/world/asia/14seismic.html
http://www.nytimes.com/2011/03/14/world/asia/14seismic.html
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The statistics of surprise:

From: “Quake Moves Japan Closer to U.S. and Alters Earth’s
Spin”� by Kenneth Chang, March 13, 2011, NYT:
‘What is perhaps most surprising about the Japan earthquake is
howmisleading history can be. In the past 300 years, no
earthquake nearly that large—nothing larger than magnitude
eight—had struck in the Japan subduction zone. That, in turn,
led to assumptions about how large a tsunami might strike the
coast.’

“‘It did them a giant disservice,” said Dr. Stein of the geological
survey.

That is not the first time that the earthquake potential of a
fault has been underestimated. Most geophysicists did not think
the Sumatra fault could generate a magnitude 9.1 earthquake, …’
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ingredients such as salt, sugar, and egg constitute a major part of

our every-day diet. As a result, the set of distinct ingredients

roughly follows Heap’s law, as seen in Fig. 4, with an exponent

around 0:64. According to the method in previous work [20], the

exponent of Zipf’s law corresponding to Fig. 3 can be estimated by
1

l{1
. The product of this exponent and the exponent of Heap’s

law (0.64) is close to 1, which is consistent with the previous result

[21].

Quantifying similarity between cuisines
Our dataset can be considered as a bipartite network with a set

of recipes and a set of ingredients. An edge between a recipe and

an ingredient indicates that the recipe contains the corresponding

ingredient. Since each recipe belongs to one and only one regional

cuisine, the edges could be categorized into cuisines. Given a

cuisine c and an ingredient i, we use nc
i to denote the degree of

ingredient i, counted with edges in cuisine c. In other words, nc
i is

the number of recipes (in cuisine c) that use ingredient i.

Therefore, the ingredient-usage vector of regional cuisine c is

written in the following form:

fPcPc~(pc
1,pc

2, . . . ,pc
i , . . . ,pc

n), ð1Þ

where pc
i ~

nc
iP

i~1 nc
i

is the probability of ingredient i appears in

cuisine c. For example, if recipes in a regional cuisine c use 1,000
ingredients (with duplicates) in total and ingredient i appears in 10

recipes in that cuisine, we have pc
i ~

10

1000
.

Since common ingredients carry little information, we use an

ingredient-usage vector inspired by TF-IDF (Term Frequency

Inverse Document Frequency) [22]:

Pc~(w1pc
1,w2pc

2, . . . ,wjp
c
i , . . . ,wnpc

n), ð2Þ

where a prior weight wi~log

P
c

P
i nc

iP
c nc

i

is introduced to penalize a

popular ingredient. We use Pc for all calculations in this paper.

With this representation in hand, we quantify the similarity

between two cuisines using the Pearson correlation coefficient (Eq.

3) and cosine similarity (Eq. 4).

(i) Pearson product-moment correlation [23]: This metric

measures the extent to which a linear relationship is present

between the two vectors. It is defined as

Figure 1. Map of regional cuisines in China.
doi:10.1371/journal.pone.0079161.g001
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)
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Figure 2. Probability distribution of the number of ingredients
per recipe. All regional cuisines show similar distributions, which have
a peak around 10.
doi:10.1371/journal.pone.0079161.g002

Geography and Similarity of Chinese Cuisines

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79161

“Geography and similarity of regional cuisines in
China”�
Zhu et al.,
PLoS ONE, 8, e79161, 2013. [19]

� Fraction of ingredients that
appear in at least 𝑘 recipes.

� Oops in notation: 𝑃(𝑘) is the
Complementary Cumulative
Distribution 𝑃≥(𝑘)

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu//research/papers/others/everything/zhu2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/zhu2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/zhu2013a.pdf
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“On a class of skew distribution functions”�
Herbert A. Simon,
Biometrika, 42, 425–440, 1955. [16]

2 Power laws, Pareto distributions and Zipf’s law
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FIG. 1 Left: histogram of heights in centimetres of American males. Data from the National Health Examination Survey,
1959–1962 (US Department of Health and Human Services). Right: histogram of speeds in miles per hour of cars on UK
motorways. Data from Transport Statistics 2003 (UK Department for Transport).
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FIG. 2 Left: histogram of the populations of all US cities with population of 10 000 or more. Right: another histogram of the
same data, but plotted on logarithmic scales. The approximate straight-line form of the histogram in the right panel implies
that the distribution follows a power law. Data from the 2000 US Census.

is fixed, it is determined by the requirement that the
distribution p(x) sum to 1; see Section III.A.)

Power-law distributions occur in an extraordinarily di-
verse range of phenomena. In addition to city popula-
tions, the sizes of earthquakes [3], moon craters [4], solar
flares [5], computer files [6] and wars [7], the frequency of
use of words in any human language [2, 8], the frequency
of occurrence of personal names in most cultures [9], the
numbers of papers scientists write [10], the number of
citations received by papers [11], the number of hits on
web pages [12], the sales of books, music recordings and
almost every other branded commodity [13, 14], the num-
bers of species in biological taxa [15], people’s annual in-
comes [16] and a host of other variables all follow power-
law distributions.1

1 Power laws also occur in many situations other than the statis-

Power-law distributions are the subject of this arti-
cle. In the following sections, I discuss ways of detecting
power-law behaviour, give empirical evidence for power
laws in a variety of systems and describe some of the
mechanisms by which power-law behaviour can arise.

Readers interested in pursuing the subject further may
also wish to consult the reviews by Sornette [18] and
Mitzenmacher [19], as well as the bibliography by Li.2

tical distributions of quantities. For instance, Newton’s famous
1/r2 law for gravity has a power-law form with exponent α = 2.
While such laws are certainly interesting in their own way, they
are not the topic of this paper. Thus, for instance, there has
in recent years been some discussion of the “allometric” scal-
ing laws seen in the physiognomy and physiology of biological
organisms [17], but since these are not statistical distributions
they will not be discussed here.

2 http://linkage.rockefeller.edu/wli/zipf/.

“Power laws, Pareto distributions and Zipf’s law”�
M. E. J. Newman,
Contemporary Physics, 46, 323–351, 2005. [12]
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Power-Law Distributions in
Empirical Data∗

Aaron Clauset†
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Abstract. Power-law distributions occur in many situations of scientific interest and have significant
consequences for our understanding of natural and man-made phenomena. Unfortunately,
the detection and characterization of power laws is complicated by the large fluctuations
that occur in the tail of the distribution—the part of the distribution representing large
but rare events—and by the difficulty of identifying the range over which power-law behav-
ior holds. Commonly used methods for analyzing power-law data, such as least-squares
fitting, can produce substantially inaccurate estimates of parameters for power-law dis-
tributions, and even in cases where such methods return accurate answers they are still
unsatisfactory because they give no indication of whether the data obey a power law at
all. Here we present a principled statistical framework for discerning and quantifying
power-law behavior in empirical data. Our approach combines maximum-likelihood fitting
methods with goodness-of-fit tests based on the Kolmogorov–Smirnov (KS) statistic and
likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic
data and give critical comparisons to previous approaches. We also apply the proposed
methods to twenty-four real-world data sets from a range of different disciplines, each of
which has been conjectured to follow a power-law distribution. In some cases we find these
conjectures to be consistent with the data, while in others the power law is ruled out.
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1. Introduction. Many empirical quantities cluster around a typical value. The
speeds of cars on a highway, the weights of apples in a store, air pressure, sea level,
the temperature in New York at noon on a midsummer’s day: all of these things vary
somewhat, but their distributions place a negligible amount of probability far from
the typical value, making the typical value representative of most observations. For
instance, it is a useful statement to say that an adult male American is about 180cm
tall because no one deviates very far from this height. Even the largest deviations,
which are exceptionally rare, are still only about a factor of two from the mean in
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“Power-law distributions in empirical data”�
Clauset, Shalizi, and Newman,
SIAMReview, 51, 661–703, 2009. [5]
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FIG. 4 Cumulative distributions or “rank/frequency plots” of twelve quantities reputed to follow power laws. The distributions
were computed as described in Appendix A. Data in the shaded regions were excluded from the calculations of the exponents
in Table I. Source references for the data are given in the text. (a) Numbers of occurrences of words in the novel Moby Dick
by Hermann Melville. (b) Numbers of citations to scientific papers published in 1981, from time of publication until June
1997. (c) Numbers of hits on web sites by 60 000 users of the America Online Internet service for the day of 1 December 1997.
(d) Numbers of copies of bestselling books sold in the US between 1895 and 1965. (e) Number of calls received by AT&T
telephone customers in the US for a single day. (f) Magnitude of earthquakes in California between January 1910 and May 1992.
Magnitude is proportional to the logarithm of the maximum amplitude of the earthquake, and hence the distribution obeys a
power law even though the horizontal axis is linear. (g) Diameter of craters on the moon. Vertical axis is measured per square
kilometre. (h) Peak gamma-ray intensity of solar flares in counts per second, measured from Earth orbit between February
1980 and November 1989. (i) Intensity of wars from 1816 to 1980, measured as battle deaths per 10 000 of the population of the
participating countries. (j) Aggregate net worth in dollars of the richest individuals in the US in October 2003. (k) Frequency
of occurrence of family names in the US in the year 1990. (l) Populations of US cities in the year 2000.
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Size distributions:

Some examples:
� Earthquake magnitude (Gutenberg-Richter law�): [9, 1]

𝑃(𝑀) ∝ 𝑀−2

� # war deaths: [15] 𝑃(𝑑) ∝ 𝑑−1.8

� Sizes of forest fires [8]

� Sizes of cities: [16] 𝑃(𝑛) ∝ 𝑛−2.1

� # links to and from websites [2]

� Note: Exponents range in error

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Gutenberg-Richter_law
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Some examples:
� Earthquake magnitude (Gutenberg-Richter law�): [9, 1]

𝑃(𝑀) ∝ 𝑀−2

� # war deaths: [15] 𝑃(𝑑) ∝ 𝑑−1.8

� Sizes of forest fires [8]

� Sizes of cities: [16] 𝑃(𝑛) ∝ 𝑛−2.1

� # links to and from websites [2]

� Note: Exponents range in error
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More examples:
� # citations to papers: [6, 14] 𝑃(𝑘) ∝ 𝑘−3.

� Individual wealth (maybe): 𝑃(𝑊) ∝ 𝑊 −2.
� Distributions of tree trunk diameters: 𝑃(𝑑) ∝ 𝑑−2.
� The gravitational force at a random point in the universe: [10]

𝑃(𝐹) ∝ 𝐹 −5/2. (See the Holtsmark distribution� and
stable distributions�.)

� Diameter of moon craters: [12] 𝑃(𝑑) ∝ 𝑑−3.
� Word frequency: [16] e.g., 𝑃(𝑘) ∝ 𝑘−2.2 (variable).
� # religious adherents in cults: [5] 𝑃(𝑘) ∝ 𝑘−1.8±0.1.
� # sightings of birds per species (North American Breeding

Bird Survey for 2003): [5] 𝑃(𝑘) ∝ 𝑘−2.1±0.1.
� # species per genus: [18, 16, 5] 𝑃(𝑘) ∝ 𝑘−2.4±0.2.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Holtsmark_distribution
http://en.wikipedia.org/wiki/Stable_distribution
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Table 3 Basic parameters of the data sets described in section 6, along with their power-law fits and the corresponding p-values (statistically significant values
are denoted in bold).

Quantity n 〈x〉 σ xmax x̂min α̂ ntail p
count of word use 18 855 11.14 148.33 14 086 7 ± 2 1.95(2) 2958 ± 987 0.49
protein interaction degree 1846 2.34 3.05 56 5 ± 2 3.1(3) 204 ± 263 0.31
metabolic degree 1641 5.68 17.81 468 4 ± 1 2.8(1) 748 ± 136 0.00
Internet degree 22 688 5.63 37.83 2583 21 ± 9 2.12(9) 770 ± 1124 0.29
telephone calls received 51 360 423 3.88 179.09 375 746 120 ± 49 2.09(1) 102 592 ± 210 147 0.63
intensity of wars 115 15.70 49.97 382 2.1 ± 3.5 1.7(2) 70 ± 14 0.20
terrorist attack severity 9101 4.35 31.58 2749 12 ± 4 2.4(2) 547 ± 1663 0.68
HTTP size (kilobytes) 226 386 7.36 57.94 10 971 36.25 ± 22.74 2.48(5) 6794 ± 2232 0.00
species per genus 509 5.59 6.94 56 4 ± 2 2.4(2) 233 ± 138 0.10
bird species sightings 591 3384.36 10 952.34 138 705 6679 ± 2463 2.1(2) 66 ± 41 0.55
blackouts (×103) 211 253.87 610.31 7500 230 ± 90 2.3(3) 59 ± 35 0.62
sales of books (×103) 633 1986.67 1396.60 19 077 2400 ± 430 3.7(3) 139 ± 115 0.66

population of cities (×103) 19 447 9.00 77.83 8 009 52.46 ± 11.88 2.37(8) 580 ± 177 0.76
email address books size 4581 12.45 21.49 333 57 ± 21 3.5(6) 196 ± 449 0.16
forest fire size (acres) 203 785 0.90 20.99 4121 6324 ± 3487 2.2(3) 521 ± 6801 0.05
solar flare intensity 12 773 689.41 6520.59 231 300 323 ± 89 1.79(2) 1711 ± 384 1.00
quake intensity (×103) 19 302 24.54 563.83 63 096 0.794 ± 80.198 1.64(4) 11 697 ± 2159 0.00
religious followers (×106) 103 27.36 136.64 1050 3.85 ± 1.60 1.8(1) 39 ± 26 0.42
freq. of surnames (×103) 2753 50.59 113.99 2502 111.92 ± 40.67 2.5(2) 239 ± 215 0.20
net worth (mil. USD) 400 2388.69 4 167.35 46 000 900 ± 364 2.3(1) 302 ± 77 0.00
citations to papers 415 229 16.17 44.02 8904 160 ± 35 3.16(6) 3455 ± 1859 0.20
papers authored 401 445 7.21 16.52 1416 133 ± 13 4.3(1) 988 ± 377 0.90
hits to web sites 119 724 9.83 392.52 129 641 2 ± 13 1.81(8) 50 981 ± 16 898 0.00
links to web sites 241 428 853 9.15 106 871.65 1 199 466 3684 ± 151 2.336(9) 28 986 ± 1560 0.00

� We’ll explore various exponent measurement techniques in
assignments.
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power-law size distributions

Gaussians versus power-law size distributions:
� Mediocristan versus Extremistan
� Mild versus Wild (Mandelbrot)
� Example: Height versus wealth.

� See “The Black Swan” by Nassim
Taleb. [17]

� Terrible if successful framing: Black
swans are not that surprising …

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Turkeys …

From “The Black Swan” [17]
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Taleb’s table [17]

Mediocristan/Extremistan

� Most typical member is mediocre/Most typical is either giant or tiny

� Winners get a small segment/Winner take almost all effects

� When you observe for a while, you know what’s going on/It takes a
very long time to figure out what’s going on

� Prediction is easy/Prediction is hard

� History crawls/History makes jumps

� Tyranny of the collective/Tyranny of the rare and accidental

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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� History crawls/History makes jumps

� Tyranny of the collective/Tyranny of the rare and accidental

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Size distributions:

Power-law size distributions are sometimes
called
Pareto distributions� after Italian scholar
Vilfredo Pareto.�

� Pareto noted wealth in Italy was
distributed unevenly (80/20 rule;
misleading, see later).

� Term used especially by practitioners of
the Dismal Science�.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Pareto_distribution
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Devilish power-law size distribution details:

Exhibit A:
� Given 𝑃(𝑥) = 𝑐𝑥−𝛾 with 0 < 𝑥min < 𝑥 < 𝑥max,

the mean is (𝛾 ≠ 2):

⟨𝑥⟩ = 𝑐
2 − 𝛾

(𝑥2−𝛾
max − 𝑥2−𝛾

min ) .

� Mean ‘blows up’ with upper cutoff if 𝛾 < 2.
� Mean depends on lower cutoff if 𝛾 > 2.
� 𝛾 < 2: Typical sample is large.
� 𝛾 > 2: Typical sample is small.

Insert assignment question�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/assignments/
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Moments:

� If 𝑛 ≠ 𝛾 − 1:

⟨𝑥𝑛⟩ = ∫
𝑥max

𝑥min

𝑥𝑛𝑃 (𝑥) d𝑥 = 𝑐
𝑛 − 𝛾 + 1

(𝑥𝑛−𝛾+1
max − 𝑥𝑛−𝛾+1

min ) .

where 𝑐 = 𝛾 − 1
𝑎−(𝛾−1) − 𝑏−(𝛾−1) .

� Because both 𝑛 − 𝛾 + 1 and (𝑥𝑛−𝛾+1
max − 𝑥𝑛−𝛾+1

min ) are either
negative or positive, we can write:

⟨𝑥𝑛⟩ = 𝑐
|𝑛 − 𝛾 + 1|

∣𝑥𝑛−𝛾+1
max − 𝑥𝑛−𝛾+1

min ∣ .

� If 𝑛 = 𝛾 − 1:
⟨𝑥𝑛⟩ = 𝑐𝑥max

𝑥min
.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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“The horror, the horror …”�

Moments:
� All moments depend only on cutoffs.

� No internal scale that dominates/matters.
� Compare to a Gaussian, exponential, etc.

For many real size distributions: 2 < 𝛾 < 3

� mean is finite (depends on lower cutoff)
� 𝜎2 = variance is ‘infinite’ (depends on upper cutoff)
� Width of distribution is ‘infinite’
� If 𝛾 > 3, distribution is less terrifying and may be easily

confused with other kinds of distributions.

Insert assignment question�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://www.youtube.com/watch?v=_ALD94wv6B0
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/assignments/
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Moments

Standard deviation is a mathematical convenience:

� Variance is nice analytically …
� Another measure of distribution width:

Mean average deviation (MAD) = ⟨|𝑥 − ⟨𝑥⟩|⟩

� For a pure power law with 2 < 𝛾 < 3:

⟨|𝑥 − ⟨𝑥⟩|⟩ is finite.

� ButMAD is mildly unpleasant analytically …
� We still speak of infinite ‘width’ if 𝛾 < 3.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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� Another measure of distribution width:

Mean average deviation (MAD) = ⟨|𝑥 − ⟨𝑥⟩|⟩

� For a pure power law with 2 < 𝛾 < 3:

⟨|𝑥 − ⟨𝑥⟩|⟩ is finite.

� ButMAD is mildly unpleasant analytically …
� We still speak of infinite ‘width’ if 𝛾 < 3.
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How sample sizes grow …

Given 𝑃(𝑥) ∼ 𝑐𝑥−𝛾:
� We can show that after 𝑛 samples, we expect the largest sample

to be2
𝑥1 ≳ 𝑐′𝑛1/(𝛾−1)

� Sampling from a finite-variance distribution gives a much
slower growth with 𝑛.

� e.g., for 𝑃(𝑥) = 𝜆𝑒−𝜆𝑥, we find

𝑥1 ≳ 1
𝜆
ln𝑛.

Insert assignment question�

2Later, we see that the largest sample grows as𝑛𝛼 where𝛼 is the size-ranking
exponent

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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� 𝛾 = 5/2, maxima of𝑁 samples, 𝑛 =1000 sets of samples:
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� 𝛾 = 3/2, maxima of𝑁 samples, 𝑛 =1000 sets of samples:
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� 𝛾 = 3/2, maxima of𝑁 samples, 𝑛 =1000 sets of samples:
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� Scaling of expected largest value as a function of sample size
𝑁:
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� Fit for 𝛾 = 5/2:3𝑘max ∼ 𝑁0.660±0.066 (sublinear)
� Fit for 𝛾 = 3/2: 𝑘max ∼ 𝑁2.063±0.215 (superlinear)

395% confidence interval
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Back to understanding the 80/20 rule:
� Imagine a population of 𝑛 people with variable 𝑥 for

individual wealth.

� Define𝑁(𝑥) = 𝑐𝑥−𝛾 as the distribution of wealth 𝑥.
� Must have ∫∞

𝑥min
d𝑥 𝑁(𝑥) = 𝑛.

� Total wealth𝑊 in the system:
𝑊 = ∫∞

𝑥min
d𝑥 𝑥𝑁(𝑥).

� Imagine that the bottom 100 𝜃pop percent of the population
holds 100 𝜃wealth percent of the wealth.

� Find 𝛾 depends on 𝜃pop and 𝜃wealth as

𝛾 = 1 +
ln 1

(1−𝜃pop)

ln 1
(1−𝜃pop)

− ln 1
(1−𝜃wealth)

. (1)

� Pleasant detail: 𝑥min does not matter.
Insert assignment question�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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80/20, 𝛾, and the Gini coefficent𝐺:

Gini coefficient�:
Ratio of blue shape’s area to triangle’s area.
0 ≤ 𝐺 ≤ 1
Blue line is the “Lorenz curve.”
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The top 1% owns 52.3%, the top 0.1% 38.4%, the top 0.01% 27.9%, the top 10−7% 5.6%, …

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://en.wikipedia.org/wiki/Gini_coefficient
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The 51/49 rule:
𝛾 ≃ 18.8.

100 𝜃pop 100 𝜃wealth 100(1 − 𝜃pop) 100(1 − 𝜃wealth)
20 18.99 80 81.01
51 49 49 51
80 78.11 20 21.89
90 88.62 10 11.38
99 98.71 1 1.29

100 − 10−1 99.85 10−1 0.15
100 − 10−2 99.98 10−2 0.02
100 − 10−3 100.00 10−3 0.00
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80/20 rule:

𝛾 ≃ 2.16.

100 𝜃pop 100 𝜃wealth 100(1 − 𝜃pop) 100(1 − 𝜃wealth)
20 3.05 80 96.95
50 9.16 50 90.84
80 20 20 80
90 27.33 10 72.67
99 47.19 1 52.81

100 − 10−1 61.62 10−1 38.38
100 − 10−2 72.11 10−2 27.89
100 − 10−3 79.73 10−3 20.27
100 − 10−4 85.27 10−4 14.73
100 − 10−5 89.30 10−5 10.70
100 − 10−6 92.22 10−6 7.78
100 − 10−7 94.35 10−7 5.65
100 − 10−8 95.89 10−8 4.11
100 − 10−9 97.02 10−9 2.98
100 − 10−10 97.83 10−10 2.17
100 − 10−11 98.42 10−11 1.58
100 − 10−12 98.85 10−12 1.15
100 − 10−13 99.17 10−13 0.83

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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99/1 rule:
𝛾 ≃ 2.002.

100 𝜃pop 100 𝜃wealth 100(1 − 𝜃pop) 100(1 − 𝜃wealth)
20 0.05 80 99.95
50 0.15 50 99.85
80 0.35 20 99.65

100 − 101 0.50 101 99.50
99 1 1 99

100 − 10−1 1.50 10−1 98.50
100 − 10−2 1.99 10−2 98.01
100 − 10−3 2.48 10−3 97.52
100 − 10−4 2.97 10−4 97.03
100 − 10−5 3.46 10−5 96.54
100 − 10−6 3.94 10−6 96.06
100 − 10−7 4.42 10−7 95.58
100 − 10−8 4.90 10−8 95.10
100 − 10−9 5.38 10−9 94.62
100 − 10−10 5.85 10−10 94.15
100 − 10−11 6.32 10−11 93.68
100 − 10−12 6.79 10−12 93.21
100 − 10−13 7.26 10−13 92.74

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Gini coefficent:

𝐺 = {
1 if 1 < 𝛾 ≤ 2,
1

1+2(𝛾−2) if 𝛾 > 2. (2)

Insert assignment question�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Complementary Cumulative Distribution Function:

CCDF:
�

𝑃≥(𝑥) ∝ 𝑥−(𝛾−1)

� Use when tail of 𝑃 follows a power law.
� Increases exponent by one.
� Useful in cleaning up data.
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Complementary Cumulative Distribution Function:

� Same story for a discrete variable: 𝑃(𝑘) ∼ 𝑐𝑘−𝛾.
�

𝑃≥(𝑘) = 𝑃(𝑘′ ≥ 𝑘)

=
∞

∑
𝑘′=𝑘

𝑃(𝑘)

∝ 𝑘−(𝛾−1)

� Use integrals to approximate sums.
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The Boggoracle Speaks:��

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2018-09-10pocs-boggle-zipfs-law.mp4
https://pdodds.w3.uvm.edu/videos/2018-09-10pocs-boggle-zipfs-law.mp4
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“Zipfian” size-rank plots

George Kingsley Zipf:
� Noted various rank distributions

have power-law tails, often with exponent -1
(word frequency, city sizes, …)

� Zipf’s 1949MagnumOpus�:

� We’ll study Zipf’s law in depth …

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Principle_of_least_effort
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“Zipfian” size-rank plots

Zipf’s way:

� Given a collection of entities, rank them by size, largest to
smallest.

� 𝑆𝑟 = the size of the 𝑟th ranked entity.
� General term: “Size ranking”
� 𝑟 = 1 corresponds to the largest size.
� Example: 𝑆1 could be the frequency of occurrence of the

most common word in a text.
� Zipf’s observation:

𝑆𝑟 ∝ 𝑟−𝛼

with 𝛼 often close to 1.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Misrankings

The “biggest” thing is rank #1, otherwise:

� “USA #195!”4

� “USA #195!”
� “USA #195!”
� “USA #195!”

More:

� Size distribution connects with ‘#1-is-biggest’ ‘size’ ranking
only

� Main form of ranking by decreasing ‘size’ is robust to low
sampling of small ‘size’ entities (the tail ‘fills in’).

4

As of August 2024�. Not simple agreed upon by all.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://en.wikipedia.org/w/index.php?title=List_of_sovereign_states&oldid=1240651507
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More:

� Size distribution connects with ‘#1-is-biggest’ ‘size’ ranking
only

� Main form of ranking by decreasing ‘size’ is robust to low
sampling of small ‘size’ entities (the tail ‘fills in’).

4As of August 2024�. Not simple agreed upon by all.
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Ranks can be confusing ...��

Free Guy�, a Mariah Carey delivery vehicle.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2022-02-25free-guy-ranks-high-low-confusion.mp4
https://pdodds.w3.uvm.edu/videos/2022-02-25free-guy-ranks-high-low-confusion.mp4
https://www.imdb.com/title/tt6264654/


The PoCSverse
Power-Law Size
Distributions
65 of 80
Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Size rankings and
Zipf’s law

Size ranking⇔
CCDF

References

Size ranking example:

Nature (2014):
Most cited papers of all
time�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://www.nature.com/news/the-top-100-papers-1.16224
http://www.nature.com/news/the-top-100-papers-1.16224
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Incel typology:
The incel lexicon:

Deciphering the emergent cryptolect of a global misogynistic community
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(Dated: May 26, 2021)

Evolving out of a gender-neutral framing of an involuntary celibate identity, the concept of ‘incels’
has come to refer to an online community of men who bear antipathy towards themselves, women,
and society-at-large for their perceived inability to find and maintain sexual relationships. By
exploring incel language use on Reddit, a global online message board, we contextualize the incel
community’s online expressions of misogyny and real-world acts of violence perpetrated against
women. After assembling around three million comments from incel-themed Reddit channels, we
analyze the temporal dynamics of a data driven rank ordering of the glossary of phrases belonging
to an emergent incel lexicon. Our study reveals the generation and normalization of an extensive
coded misogynist vocabulary in service of the group’s identity.

I. INTRODUCTION

Incels are self-identified members of a global,
online subculture whose members subscribe to
resentful misogynist views on women as the result
of a perceived unfulfilled entitlement to love and
sex. Incels publicly participate in discussions
on Reddit, 4chan, and other platforms where
pseudo-anonymity can be preserved. Online incel
discussions are in part encoded by slang terms as
well as memes which express misogyny through
humor, sufficient to generate an incel cryptolect.

Within the last decade, incels have gained
notoriety for their toxic contributions to online
communities and for their association with real-
world acts of mass violence. On May 23, 2014, 22
year old Elliot Rodger killed 6 people and injured
14 others shortly after sending a written manifesto
to people he knew, as well as uploading a video to
YouTube that detailed his loathing for women and
anger towards society. Later perpetrators have cited
Elliot Rodger as an inspiration for their attacks [3].
For example, on April 23, 2018, Alek Minassian
drove a van into a Toronto crowd, killing 10 and
injuring 16, an hour after posting the following text
to Facebook:

Private (Recruit) Minassian Infantry
00010, wishing to speak to Sgt 4chan
please. C23249161. The Incel Rebellion
has already begun! We will overthrow
all the Chads and Stacys! All hail the
Supreme Gentleman Elliot Rodger! [4]

A number of other attacks have been associated

with the incel community, such as the Tallahassee
yoga studio shooting, during which Scott Beierle
shot and killed two women shortly after referencing
Elliot Rodger in videos online [5]. These attacks
brought the threat of incels to the forefront of US
media attention, as well as that of the US Air
Force, which held a briefing in 2019 to discuss the
increasing national threat of incel attacks [6]. The
Southern Poverty Law Center (SPLC) found that
the incel community not only praised attackers who
identified as incels, but also praised the Las Vegas
shooter for killing ‘normies’, despite his lack of
association with the incel community [7]. The incel
community praises mass acts of violence and does
so using a unique lexicon that has gradually crept
into popular culture.

Inceldom is part of a larger misogynist ecosystem,
called the ‘Manosphere’ [8, 9]. In addition to
incels, the Manosphere is comprised of Men’s
Rights Activists, Men Going Their Own Way
(MGTOW), and Pick-Up Artists (PUAs). Each
of these groups subscribe to the same underlying
philosophy, referred to as the ‘red pill’ [8]. When
an individual has ‘taken the red pill’, they have
enlightened themselves to a reality in which
women wield feminism as a weapon against men,
depriving them of sex and love. The phrase
originally appeared in the film ‘The Matrix’ under
a different context [10]. PUAs seek to regain
sexual power by taking advantage of women;
MGTOW members voluntarily reject relationships
with women altogether; and incels commiserate and
express anger over their lack of sexual activity.
Here, we narrow our focus to the incel community
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“The incel lexicon: Deciphering the emergent
cryptolect of a global misogynistic community”�
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, 2021. [7] 7

FIG. 5. Zipf distribution of comments per author
in the incel, random, r/TwoXChromosome,
r/liberal, r/conservatives corpora. Incel users
are more active and engaged on their respective
subreddits than users on r/TwoXChromosome,
r/liberal, r/conservatives, and users from randomly
selected comments. The Zipf distributions of comments
per author for each corpus is shown to illustrate that
the distribution for incel comments per author is greater
than all other comparison corpora, which indicates a
greater level of engagement from incel users.

FIG. 6. Complementary distribution function
(CDF) of percentage of users from the random,
incel, r/TwoXChromosomes, r/liberal, and
r/conservatives corpora that commented n
times. By plotting the CDF of the percentage of users
that commented n times for each corpus, we can identify
that the group with the smallest fraction of single-
comment users is the incel group. The incel users are
less likely to engage only once in their subreddit than
users from our comparison communities.

for “voluntary celibate” are also used often. More
niche instances of “-cel” terms include — “femcel”
a female incel — “arabcel”, an arab incel — and
“dotacel”, an incel who presumably plays the video
game Dota. Other popular instances are “fakecel”,
someone who claims they are an incel but actually
do have relationships with women, and “truecel”,
the antithesis to the “fakecel”. This type of term

FIG. 7. Zipf distribution of terms that end with
“-cel” in the incel corpus. The above distribution
shows the frequency of each term that ends in “-cel” in
the incel corpus vs its rank. Some of the points have
been labelled with their respective “-cel” term. The
highest ranked and most frequently occurring term is
“incel”. “Volcel”, or “voluntary celibate” is another
popular instance of “-cel” terms. The diversity of these
terms is indicative of user identification with the incel
movement.

is meant to classify incels based on what makes
them an incel, or some defining characteristic that
sums up their identity. Incels refer to themselves by
unique “-cel” terms to describe themselves and their
life experience, resulting in a Zipfian distribution
of frequency versus rank of “-cel” terms. Users on
incel forums connect their own personal traits with
the incel movement through language, making their
own identity inseparable from the theoretical incel
identity.

To construct our incel lexicon, we identify
words that appear very often in incel comments
and that also appear infrequently in random
Reddit comments using rank-turbulence divergence.
Fig. 8 is a rank-turbulence divergence plot of the
distribution of words from our incel comments
corpus compared to the distribution of words from
our random comments corpus. Nearly all of the top
40 words on the left, apart from “you” and “de”, are
thematically related to incel topics. This indicates
that while many words used in the random sample
corpus are also used in the incel community, there
are words distinctively used in the incel corpus,
signaling the presence a distinct lexicon used by the
incel community.

The set of words that appear far to the right
of the center line are the words we hypothesize
to be members of the incel lexicon. The top
40 words that had the greatest di↵erence in rank
in the incel versus random corpora are listed in
Fig. 8. Nearly every term is topically related to
sex, gender, appearance, and social status, which

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu//research/papers/others/everything/gothard2021a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/gothard2021a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/gothard2021a.pdf
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We perform a quantitative analysis of extensive chess databases and show that the frequencies of

opening moves are distributed according to a power law with an exponent that increases linearly with the

game depth, whereas the pooled distribution of all opening weights follows Zipf’s law with universal

exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and

show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus, in the case of

hierarchical fragmentation the scaling is truly universal and independent of a particular generating

mechanism. Our findings are of relevance in general processes with composite decisions.

DOI: 10.1103/PhysRevLett.103.218701 PACS numbers: 89.20.�a, 05.40.�a, 89.75.Da

Decision making refers to situations where individuals
have to select a course of action among multiple alterna-
tives [1]. Such processes are ubiquitous, ranging from
one’s personal life to business, management, and politics,
and have a large part in shaping our life and society.
Decision making is an immensely complex process and,
given the number of factors that influence each choice, a
quantitative understanding in terms of statistical laws re-
mains a difficult and often elusive goal. Investigations are
complicated by the shortage of reliable data sets, since
information about human behavior is often difficult to be
quantified and not easily available in large numbers,
whereas decision processes typically involve a huge space
of possible courses of action. Board games, such as chess,
provide a well-documented case where the players in turn
select their next move among a set of possible game
continuations that are determined by the rules of the game.

Human fascination with the game of chess is long-
standing and pervasive [2], not least due to the sheer
infinite richness of the game. The total number of different
games that can be played, i.e., the game-tree complexity of
chess, has roughly been estimated as the average number of
legal moves in a chess position to the power of the length of
a typical game, yielding the Shannon number 3080 � 10120

[3]. Obviously only a small fraction of all possible games
can be realized in actual play. But even during the first
moves of a game, when the game complexity is still
manageable, not all possibilities are explored equally
often. While the history of successful initial moves has
been classified in opening theory [4], not much is known
about the mechanisms underlying the formation of fashion-
able openings [5]. With the recent appearance of extensive
databases, playing habits have become accessible to quan-
titative analysis, making chess an ideal platform for ana-
lyzing human decision processes.

The set of all possible games can be represented by a
directed graph whose nodes are game situations and whose
edges correspond to legal moves from each position

(Fig. 1). Every opening is represented by its move se-
quence as a directed path starting from the initial node.
We will differentiate between two game situations if they
are reached by different move sequences. This way the
graph becomes a game tree, and each node � is uniquely
associated with an opening sequence.
Using a chess database [6] we can measure the popular-

ity n� or weight of every opening sequence as the number
of occurrences in the database. We find that the weighted
game tree of chess is self-similar and the frequencies SðnÞ
of weights follow a Zipf law [7]

SðnÞ � n�� (1)

with universal exponent� ¼ 2. Note, the precise scaling in
the histogram of weight frequencies SðnÞ and in the cumu-
lative distribution CðnÞ over the entire observable range
[Fig. 2(a)]. Similar power law distributions with universal
exponent have been identified in a large number of natural,
economic, and social systems [7–15]—a fact which has
come to known as the Zipf or Pareto law [7,8]. If we count
only the frequencies SdðnÞ of opening weights n� after the
first d moves we still find broad distributions consistent
with power law behavior SdðnÞ � n��d [Fig. 2(b)]. The
exponents �d are not universal, however, but increase
linearly with d [Fig. 2(b), inset). The results are robust:
similar power laws could be observed in different data-
bases and other board games, regardless of the considered
game depth, constraints on player levels or the decade
when the games were played. Stretching over 6 orders of
magnitude, the here-reported distributions are among the
most precise examples for power laws known today in
social data sets.
As seen in (Fig. 1) for each node � the weights of its

subtrees define a partition of the integers (1 . . . n�). The
assumption of self-similarity implies a statistical equiva-
lence of the branching in the nodes of the tree. We can thus
define the branching ratio distribution over the real interval
r 2 ½0; 1� by the probability QðrjnÞ that a random pick

PRL 103, 218701 (2009)
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“Zipf’s Law in the Popularity Distribution of Chess
Openings”�
Blasius and Tönjes,
Phys. Rev. Lett., 103, 218701, 2009. [3]

� Examined all games of varying game depth 𝑑 in a set of chess
databases.

� 𝑛 = popularity = howmany times a specific game path appears in
databases.

� 𝑆(𝑛; 𝑑) = number of depth 𝑑 games with popularity 𝑛.

� Show “the frequencies of opening moves are distributed according
to a power law with an exponent that increases linearly with the
game depth, whereas the pooled distribution of all opening weights
follows Zipf’s law with universal exponent.”

� Propose hierarchical fragmentation model that produces self-similar
game trees.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu//research/papers/others/everything/blasius2009a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/blasius2009a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/blasius2009a.pdf
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of possible courses of action. Board games, such as chess,
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linearly with d [Fig. 2(b), inset). The results are robust:
similar power laws could be observed in different data-
bases and other board games, regardless of the considered
game depth, constraints on player levels or the decade
when the games were played. Stretching over 6 orders of
magnitude, the here-reported distributions are among the
most precise examples for power laws known today in
social data sets.
As seen in (Fig. 1) for each node � the weights of its

subtrees define a partition of the integers (1 . . . n�). The
assumption of self-similarity implies a statistical equiva-
lence of the branching in the nodes of the tree. We can thus
define the branching ratio distribution over the real interval
r 2 ½0; 1� by the probability QðrjnÞ that a random pick
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We perform a quantitative analysis of extensive chess databases and show that the frequencies of

opening moves are distributed according to a power law with an exponent that increases linearly with the

game depth, whereas the pooled distribution of all opening weights follows Zipf’s law with universal

exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and

show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus, in the case of

hierarchical fragmentation the scaling is truly universal and independent of a particular generating

mechanism. Our findings are of relevance in general processes with composite decisions.
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Decision making refers to situations where individuals
have to select a course of action among multiple alterna-
tives [1]. Such processes are ubiquitous, ranging from
one’s personal life to business, management, and politics,
and have a large part in shaping our life and society.
Decision making is an immensely complex process and,
given the number of factors that influence each choice, a
quantitative understanding in terms of statistical laws re-
mains a difficult and often elusive goal. Investigations are
complicated by the shortage of reliable data sets, since
information about human behavior is often difficult to be
quantified and not easily available in large numbers,
whereas decision processes typically involve a huge space
of possible courses of action. Board games, such as chess,
provide a well-documented case where the players in turn
select their next move among a set of possible game
continuations that are determined by the rules of the game.

Human fascination with the game of chess is long-
standing and pervasive [2], not least due to the sheer
infinite richness of the game. The total number of different
games that can be played, i.e., the game-tree complexity of
chess, has roughly been estimated as the average number of
legal moves in a chess position to the power of the length of
a typical game, yielding the Shannon number 3080 � 10120

[3]. Obviously only a small fraction of all possible games
can be realized in actual play. But even during the first
moves of a game, when the game complexity is still
manageable, not all possibilities are explored equally
often. While the history of successful initial moves has
been classified in opening theory [4], not much is known
about the mechanisms underlying the formation of fashion-
able openings [5]. With the recent appearance of extensive
databases, playing habits have become accessible to quan-
titative analysis, making chess an ideal platform for ana-
lyzing human decision processes.

The set of all possible games can be represented by a
directed graph whose nodes are game situations and whose
edges correspond to legal moves from each position

(Fig. 1). Every opening is represented by its move se-
quence as a directed path starting from the initial node.
We will differentiate between two game situations if they
are reached by different move sequences. This way the
graph becomes a game tree, and each node � is uniquely
associated with an opening sequence.
Using a chess database [6] we can measure the popular-

ity n� or weight of every opening sequence as the number
of occurrences in the database. We find that the weighted
game tree of chess is self-similar and the frequencies SðnÞ
of weights follow a Zipf law [7]

SðnÞ � n�� (1)

with universal exponent� ¼ 2. Note, the precise scaling in
the histogram of weight frequencies SðnÞ and in the cumu-
lative distribution CðnÞ over the entire observable range
[Fig. 2(a)]. Similar power law distributions with universal
exponent have been identified in a large number of natural,
economic, and social systems [7–15]—a fact which has
come to known as the Zipf or Pareto law [7,8]. If we count
only the frequencies SdðnÞ of opening weights n� after the
first d moves we still find broad distributions consistent
with power law behavior SdðnÞ � n��d [Fig. 2(b)]. The
exponents �d are not universal, however, but increase
linearly with d [Fig. 2(b), inset). The results are robust:
similar power laws could be observed in different data-
bases and other board games, regardless of the considered
game depth, constraints on player levels or the decade
when the games were played. Stretching over 6 orders of
magnitude, the here-reported distributions are among the
most precise examples for power laws known today in
social data sets.
As seen in (Fig. 1) for each node � the weights of its

subtrees define a partition of the integers (1 . . . n�). The
assumption of self-similarity implies a statistical equiva-
lence of the branching in the nodes of the tree. We can thus
define the branching ratio distribution over the real interval
r 2 ½0; 1� by the probability QðrjnÞ that a random pick
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Decision making is an immensely complex process and,
given the number of factors that influence each choice, a
quantitative understanding in terms of statistical laws re-
mains a difficult and often elusive goal. Investigations are
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information about human behavior is often difficult to be
quantified and not easily available in large numbers,
whereas decision processes typically involve a huge space
of possible courses of action. Board games, such as chess,
provide a well-documented case where the players in turn
select their next move among a set of possible game
continuations that are determined by the rules of the game.

Human fascination with the game of chess is long-
standing and pervasive [2], not least due to the sheer
infinite richness of the game. The total number of different
games that can be played, i.e., the game-tree complexity of
chess, has roughly been estimated as the average number of
legal moves in a chess position to the power of the length of
a typical game, yielding the Shannon number 3080 � 10120

[3]. Obviously only a small fraction of all possible games
can be realized in actual play. But even during the first
moves of a game, when the game complexity is still
manageable, not all possibilities are explored equally
often. While the history of successful initial moves has
been classified in opening theory [4], not much is known
about the mechanisms underlying the formation of fashion-
able openings [5]. With the recent appearance of extensive
databases, playing habits have become accessible to quan-
titative analysis, making chess an ideal platform for ana-
lyzing human decision processes.

The set of all possible games can be represented by a
directed graph whose nodes are game situations and whose
edges correspond to legal moves from each position

(Fig. 1). Every opening is represented by its move se-
quence as a directed path starting from the initial node.
We will differentiate between two game situations if they
are reached by different move sequences. This way the
graph becomes a game tree, and each node � is uniquely
associated with an opening sequence.
Using a chess database [6] we can measure the popular-

ity n� or weight of every opening sequence as the number
of occurrences in the database. We find that the weighted
game tree of chess is self-similar and the frequencies SðnÞ
of weights follow a Zipf law [7]

SðnÞ � n�� (1)

with universal exponent� ¼ 2. Note, the precise scaling in
the histogram of weight frequencies SðnÞ and in the cumu-
lative distribution CðnÞ over the entire observable range
[Fig. 2(a)]. Similar power law distributions with universal
exponent have been identified in a large number of natural,
economic, and social systems [7–15]—a fact which has
come to known as the Zipf or Pareto law [7,8]. If we count
only the frequencies SdðnÞ of opening weights n� after the
first d moves we still find broad distributions consistent
with power law behavior SdðnÞ � n��d [Fig. 2(b)]. The
exponents �d are not universal, however, but increase
linearly with d [Fig. 2(b), inset). The results are robust:
similar power laws could be observed in different data-
bases and other board games, regardless of the considered
game depth, constraints on player levels or the decade
when the games were played. Stretching over 6 orders of
magnitude, the here-reported distributions are among the
most precise examples for power laws known today in
social data sets.
As seen in (Fig. 1) for each node � the weights of its

subtrees define a partition of the integers (1 . . . n�). The
assumption of self-similarity implies a statistical equiva-
lence of the branching in the nodes of the tree. We can thus
define the branching ratio distribution over the real interval
r 2 ½0; 1� by the probability QðrjnÞ that a random pick
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from the numbers 1 . . . n is in a subset of size smaller or
equal to rn. Taking n to infinity QðrjnÞ may have a
continuous limit QðrÞ for which we find the probability
density function (PDF) qðrÞ ¼ Q0ðrÞ. If the limit distribu-
tion qðrÞ of branching ratios exists it carries the fingerprint
of the generating process. For instance, the continuum limit
of the branching ratio distribution for a Yule-Simon pref-
erential growth process [13] in each node of the tree would
be qðrÞ $ r!, where !< 0 is a model specific parameter.
On the other hand, in a k-ary tree where each game
continuation has a uniformly distributed random a priori
probability the continuum limit corresponds to a random
stick breaking process in each node, yielding qðrÞ $ ð1%
rÞk%2. For the weighted game tree of chess qðrÞ can directly
be measured from the database [Fig. 3(a)]. We find that
qðrÞ is remarkably constant over most of the interval but
diverges with exponent 0.5 as r ! 1, and is very well fitted
by the parameterless arcsine distribution

qðrÞ ¼ 2

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% r2

p : (2)

The form of the branching ratio distribution suggests that
in the case of chess there is no preferential growth process
involved, but something entirely different which must be
rooted in the decision process during the opening moves of
a chess game [5].
In the following we show that the asymptotic Zipf law in

the weight frequencies arises independently from the spe-
cific form of the distribution qðrÞ, and hence, the micro-
scopic rules of the underlying branching process. Consider
N realizations of a general self-similar random segmenta-
tion process of N integers, with paths (#0;#1; . . . ) in the
corresponding weighted tree. In the context of chess each
realization of this process corresponds to a random game
from the database ofN games (e.g., dark shading in Fig. 1).
The weights nd ¼ n#d

describe a multiplicative random
process

nd ¼ N
Yd

i¼1

ri; n0 ¼ N; (3)

where the branching ratios rd ¼ nd=nd%1 for sufficiently
large nd are distributed according to qðrÞ independent of d.
For lower values of nd the continuous branching ratio
distribution is no longer a valid approximation and a
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FIG. 2 (color online). (a) Histogram of weight frequencies
SðnÞ of openings up to d ¼ 40 in the Scid database and with
logarithmic binning. A straight line fit (not shown) yields an
exponent of $ ¼ 2:05 with a goodness of fit R2 > 0:9992. For
comparison, the Zipf distribution Eq. (8) with % ¼ 1 is indicated
as a solid line. Inset: number CðnÞ ¼ PN

m¼nþ1 SðmÞ of openings
with a popularity m> n. CðnÞ follows a power law with ex-
ponent $ ¼ 1:04 (R2 ¼ 0:994). (b) Number SdðnÞ of openings of
depth d with a given popularity n for d ¼ 16 and histograms
with logarithmic binning for d ¼ 4, d ¼ 16, and d ¼ 22. Solid
lines are regression lines to the logarithmically binned data
(R2 > 0:99 for d < 35). Inset: slope $d of the regression line
as a function of d and the analytical estimation Eq. (6) using
N ¼ 1:4' 106 and ! ¼ 0 (solid line).

FIG. 1 (color online). (a) Schematic representation of the
weighted game tree of chess based on the SCIDBASE [6] for the
first three half moves. Each node indicates a state of the game.
Possible game continuations are shown as solid lines together
with the branching ratios rd. Dotted lines symbolize other game
continuations, which are not shown. (b) Alternative representa-
tion emphasizing the successive segmentation of the set of
games, here indicated for games following a 1.d4 opening until
the fourth half move d ¼ 4. Each node # is represented by a box
of a size proportional to its frequency n#. In the subsequent half
move these games split into subsets (indicated vertically below)
according to the possible game continuations. Highlighted in (a)
and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian
defense).
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from the numbers 1 . . . n is in a subset of size smaller or
equal to rn. Taking n to infinity QðrjnÞ may have a
continuous limit QðrÞ for which we find the probability
density function (PDF) qðrÞ ¼ Q0ðrÞ. If the limit distribu-
tion qðrÞ of branching ratios exists it carries the fingerprint
of the generating process. For instance, the continuum limit
of the branching ratio distribution for a Yule-Simon pref-
erential growth process [13] in each node of the tree would
be qðrÞ $ r!, where !< 0 is a model specific parameter.
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by the parameterless arcsine distribution
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The form of the branching ratio distribution suggests that
in the case of chess there is no preferential growth process
involved, but something entirely different which must be
rooted in the decision process during the opening moves of
a chess game [5].
In the following we show that the asymptotic Zipf law in

the weight frequencies arises independently from the spe-
cific form of the distribution qðrÞ, and hence, the micro-
scopic rules of the underlying branching process. Consider
N realizations of a general self-similar random segmenta-
tion process of N integers, with paths (#0;#1; . . . ) in the
corresponding weighted tree. In the context of chess each
realization of this process corresponds to a random game
from the database ofN games (e.g., dark shading in Fig. 1).
The weights nd ¼ n#d

describe a multiplicative random
process

nd ¼ N
Yd

i¼1

ri; n0 ¼ N; (3)

where the branching ratios rd ¼ nd=nd%1 for sufficiently
large nd are distributed according to qðrÞ independent of d.
For lower values of nd the continuous branching ratio
distribution is no longer a valid approximation and a
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(R2 > 0:99 for d < 35). Inset: slope $d of the regression line
as a function of d and the analytical estimation Eq. (6) using
N ¼ 1:4' 106 and ! ¼ 0 (solid line).

FIG. 1 (color online). (a) Schematic representation of the
weighted game tree of chess based on the SCIDBASE [6] for the
first three half moves. Each node indicates a state of the game.
Possible game continuations are shown as solid lines together
with the branching ratios rd. Dotted lines symbolize other game
continuations, which are not shown. (b) Alternative representa-
tion emphasizing the successive segmentation of the set of
games, here indicated for games following a 1.d4 opening until
the fourth half move d ¼ 4. Each node # is represented by a box
of a size proportional to its frequency n#. In the subsequent half
move these games split into subsets (indicated vertically below)
according to the possible game continuations. Highlighted in (a)
and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian
defense).
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be qðrÞ $ r!, where !< 0 is a model specific parameter.
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stick breaking process in each node, yielding qðrÞ $ ð1%
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involved, but something entirely different which must be
rooted in the decision process during the opening moves of
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In the following we show that the asymptotic Zipf law in

the weight frequencies arises independently from the spe-
cific form of the distribution qðrÞ, and hence, the micro-
scopic rules of the underlying branching process. Consider
N realizations of a general self-similar random segmenta-
tion process of N integers, with paths (#0;#1; . . . ) in the
corresponding weighted tree. In the context of chess each
realization of this process corresponds to a random game
from the database ofN games (e.g., dark shading in Fig. 1).
The weights nd ¼ n#d

describe a multiplicative random
process

nd ¼ N
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where the branching ratios rd ¼ nd=nd%1 for sufficiently
large nd are distributed according to qðrÞ independent of d.
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FIG. 2 (color online). (a) Histogram of weight frequencies
SðnÞ of openings up to d ¼ 40 in the Scid database and with
logarithmic binning. A straight line fit (not shown) yields an
exponent of $ ¼ 2:05 with a goodness of fit R2 > 0:9992. For
comparison, the Zipf distribution Eq. (8) with % ¼ 1 is indicated
as a solid line. Inset: number CðnÞ ¼ PN

m¼nþ1 SðmÞ of openings
with a popularity m> n. CðnÞ follows a power law with ex-
ponent $ ¼ 1:04 (R2 ¼ 0:994). (b) Number SdðnÞ of openings of
depth d with a given popularity n for d ¼ 16 and histograms
with logarithmic binning for d ¼ 4, d ¼ 16, and d ¼ 22. Solid
lines are regression lines to the logarithmically binned data
(R2 > 0:99 for d < 35). Inset: slope $d of the regression line
as a function of d and the analytical estimation Eq. (6) using
N ¼ 1:4' 106 and ! ¼ 0 (solid line).

FIG. 1 (color online). (a) Schematic representation of the
weighted game tree of chess based on the SCIDBASE [6] for the
first three half moves. Each node indicates a state of the game.
Possible game continuations are shown as solid lines together
with the branching ratios rd. Dotted lines symbolize other game
continuations, which are not shown. (b) Alternative representa-
tion emphasizing the successive segmentation of the set of
games, here indicated for games following a 1.d4 opening until
the fourth half move d ¼ 4. Each node # is represented by a box
of a size proportional to its frequency n#. In the subsequent half
move these games split into subsets (indicated vertically below)
according to the possible game continuations. Highlighted in (a)
and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian
defense).
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from the numbers 1 . . . n is in a subset of size smaller or
equal to rn. Taking n to infinity QðrjnÞ may have a
continuous limit QðrÞ for which we find the probability
density function (PDF) qðrÞ ¼ Q0ðrÞ. If the limit distribu-
tion qðrÞ of branching ratios exists it carries the fingerprint
of the generating process. For instance, the continuum limit
of the branching ratio distribution for a Yule-Simon pref-
erential growth process [13] in each node of the tree would
be qðrÞ $ r!, where !< 0 is a model specific parameter.
On the other hand, in a k-ary tree where each game
continuation has a uniformly distributed random a priori
probability the continuum limit corresponds to a random
stick breaking process in each node, yielding qðrÞ $ ð1%
rÞk%2. For the weighted game tree of chess qðrÞ can directly
be measured from the database [Fig. 3(a)]. We find that
qðrÞ is remarkably constant over most of the interval but
diverges with exponent 0.5 as r ! 1, and is very well fitted
by the parameterless arcsine distribution

qðrÞ ¼ 2

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% r2

p : (2)

The form of the branching ratio distribution suggests that
in the case of chess there is no preferential growth process
involved, but something entirely different which must be
rooted in the decision process during the opening moves of
a chess game [5].
In the following we show that the asymptotic Zipf law in

the weight frequencies arises independently from the spe-
cific form of the distribution qðrÞ, and hence, the micro-
scopic rules of the underlying branching process. Consider
N realizations of a general self-similar random segmenta-
tion process of N integers, with paths (#0;#1; . . . ) in the
corresponding weighted tree. In the context of chess each
realization of this process corresponds to a random game
from the database ofN games (e.g., dark shading in Fig. 1).
The weights nd ¼ n#d

describe a multiplicative random
process

nd ¼ N
Yd

i¼1

ri; n0 ¼ N; (3)

where the branching ratios rd ¼ nd=nd%1 for sufficiently
large nd are distributed according to qðrÞ independent of d.
For lower values of nd the continuous branching ratio
distribution is no longer a valid approximation and a
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weighted game tree of chess based on the SCIDBASE [6] for the
first three half moves. Each node indicates a state of the game.
Possible game continuations are shown as solid lines together
with the branching ratios rd. Dotted lines symbolize other game
continuations, which are not shown. (b) Alternative representa-
tion emphasizing the successive segmentation of the set of
games, here indicated for games following a 1.d4 opening until
the fourth half move d ¼ 4. Each node # is represented by a box
of a size proportional to its frequency n#. In the subsequent half
move these games split into subsets (indicated vertically below)
according to the possible game continuations. Highlighted in (a)
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� The, of, and, to, a, …= ‘objects’
� ‘Size’ = word frequency

� Beep: (Important) CCDF and size-ranking plots are related …
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Observe:
� 𝑁𝑃≥(𝑥) = the number of objects with size at least 𝑥

where𝑁 = total number of objects.

� If an object has size 𝑥𝑟, then𝑁𝑃≥(𝑥𝑟) is its rank 𝑟.

� So
𝑥𝑟 ∝ 𝑟−𝛼 = (𝑁𝑃≥(𝑥𝑟))−𝛼

∝ 𝑥−(𝛾−1)(−𝛼)
𝑟 since 𝑃≥(𝑥) ∼ 𝑥−(𝛾−1).

We therefore have 1 = −(𝛾 − 1)(−𝛼) or:

𝛼 = 1
𝛾 − 1

� A rank distribution exponent of 𝛼 = 1 corresponds to a size
distribution exponent 𝛾 = 2.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Nutshell for power-law size distributions and size-rank
orderings:
� Heavy-tailed distributions abound.
� Some are power-law size distributions.
� Continuous: 𝑃(𝑥) ∼ 𝑥−𝛾, discrete: 𝑃(𝑘) ∼ 𝑐𝑘−𝛾

� Mean ‘blows up’ with upper cutoff if 𝛾 < 2.
� Mean depends on lower cutoff if 𝛾 > 2.
� 𝛾 < 2: Typical sample is large.
� 𝛾 > 2: Typical sample is small.
� Complementary Cumulative Distribution Function

(CCDF): 𝑃 (𝑥) ∝ 𝑥−(𝛾−1) and 𝑃≥(𝑘) = 𝑘−(𝛾−1)

� Size of largest sample from 𝑛 samples grows as:

𝑥1 ≳ 𝑐′𝑛1/(𝛾−1)

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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More with the nutshelling:
� Size rankings: Order types from “biggest” to “smallest” size 𝑆.
� Widely observed: 𝑆𝑟 is highly skewed.
� When scaling is apparent:

𝑆𝑟 ∝ 𝑟−𝛼

� Claim: 𝛼 often close to 1. “Zipf’s law”:

𝑆𝑟 ∝ 𝑟−1.

� Scalings of size distribution (𝛾) and size ranking (𝛼) are
connected:

𝛼 = 1
𝛾 − 1

and 𝛾 = 1 + 1
𝛼

.

� Danger Will Robinson point: 𝛾 = 2 ⇔ 𝛼 = 1.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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The Don.�
Extreme deviations in test cricket:

1000 10 20 30 9040 50 60 70 80

� Don Bradman’s batting average�
= 166% next best.

� That’s pretty solid.
� Later in the course: Understanding success—

is the Mona Lisa like Don Bradman?

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Donald_Bradman
http://en.wikipedia.org/wiki/Batting_average


The PoCSverse
Power-Law Size
Distributions
74 of 80
Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Size rankings and
Zipf’s law

Size ranking⇔
CCDF

References

The Don.�
Extreme deviations in test cricket:

1000 10 20 30 9040 50 60 70 80

� Don Bradman’s batting average�
= 166% next best.

� That’s pretty solid.
� Later in the course: Understanding success—

is the Mona Lisa like Don Bradman?

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Donald_Bradman
http://en.wikipedia.org/wiki/Batting_average


The PoCSverse
Power-Law Size
Distributions
74 of 80
Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Size rankings and
Zipf’s law

Size ranking⇔
CCDF

References

The Don.�
Extreme deviations in test cricket:

1000 10 20 30 9040 50 60 70 80

� Don Bradman’s batting average�
= 166% next best.

� That’s pretty solid.

� Later in the course: Understanding success—
is the Mona Lisa like Don Bradman?

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Donald_Bradman
http://en.wikipedia.org/wiki/Batting_average


The PoCSverse
Power-Law Size
Distributions
74 of 80
Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Size rankings and
Zipf’s law

Size ranking⇔
CCDF

References

The Don.�
Extreme deviations in test cricket:

1000 10 20 30 9040 50 60 70 80

� Don Bradman’s batting average�
= 166% next best.

� That’s pretty solid.
� Later in the course: Understanding success—

is the Mona Lisa like Don Bradman?

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Donald_Bradman
http://en.wikipedia.org/wiki/Batting_average


The PoCSverse
Power-Law Size
Distributions
75 of 80
Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Size rankings and
Zipf’s law

Size ranking⇔
CCDF

References

A good eye:��

youtube�

� The great Paul Kelly’s� tribute� to the man who was
“Something like the tide”

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2014-12-13Don_Bradman_in_How_I_Play_Cricket-9o6vTXgYdqA.mp4
https://pdodds.w3.uvm.edu/videos/2014-12-13Don_Bradman_in_How_I_Play_Cricket-9o6vTXgYdqA.mp4
https://www.youtube.com/watch?v=9o6vTXgYdqA
https://en.wikipedia.org/wiki/Paul_Kelly_(Australian_musician)
https://www.youtube.com/watch?v=FeG8hqQw1U8


The PoCSverse
Power-Law Size
Distributions
76 of 80
Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Size rankings and
Zipf’s law

Size ranking⇔
CCDF

References

Neural Reboot: Monotrematic Love��

youtube�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2018-06-20Hand_Feeding_and_Playing_With_A_Friendly_Platypus-a6QHzIJO5a8.mp4
https://pdodds.w3.uvm.edu/videos/2018-06-20Hand_Feeding_and_Playing_With_A_Friendly_Platypus-a6QHzIJO5a8.mp4
https://www.youtube.com/watch?v=a6QHzIJO5a8
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