Power-Law Size Distributions

Last updated: 2024/09/16, 22:10:34 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Outline

Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Size rankings and Zipf's law

Size ranking ⇔ CCDF

References

Two of the many things we struggle with cognitively:

- 1. Probability.
 - Ex. The Monty Hall Problem.
 - Ex. Daughter/Son born on Tuesday. (see next two slides; Wikipedia entry here 2.
- 2. Logarithmic scales.

On counting and logarithms:

Listen to Radiolab's 2009 piece: "Numbers." .

& Later: Benford's Law .

Also to be enjoyed: The Dunning-Kruger effect ✓¹¹

Homo probabilisticus?

The set up:

Power-Law Size Distributions

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ⇔

CCDFs

CCDF

References

Power-Law Size

Distributions

Our Intuition

Examples

CCDFs

Zipf's law

Wild vs. Mild

Size rankings and

Size ranking ⇔ CCDF

Power-Law Size

Distributions

Our Intuition

Definition

Examples

CCDFs

Zipf's law Size ranking ⇔

CCDF

References

Wild vs. Mild

1 of 71

A parent has two children.

Simple probability question:

What is the probability that both children are girls?

The next set up:

- A parent has two children
- We know one of them is a girl.

The next probabilistic poser:

What is the probability that both children are girls?

Try this one:

- A parent has two children.
- We know one of them is a girl born on a Tuesday.

Simple question #3:

What is the probability that both children are girls?

Last:

- A parent has two children
- We know one of them is a girl born on December 31.

And ...

What is the probability that both children are girls?

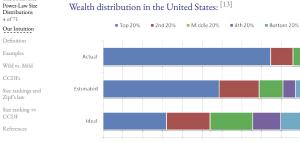
Let's test our collective intuition:

Money \equiv Belief

Two questions about wealth distribution in the United

- 1. Please estimate the percentage of all wealth owned by individuals when grouped into quintiles.
- 2. Please estimate what you believe each quintile should own, ideally.
- 3. Extremes: 100, 0, 0, 0, 0 and 20, 20, 20, 20, 20.

Wealth distribution in the United States: [13]



Percent Wealth Owned Fig. 2. The actual United States wealth distribution plotted against the estimated and ideal distributions across all respondents. Because of their small percentage share of total wealth, both the "4th 20%" value (0.2%) and the "Bottom 20%" value (0.1%) are not visible in the "Actual" distribution

"Building a better America—One wealth quintile at a time" Norton and Ariely, 2011. [13]

But: Fraud. 🗹

The PoCSverse

Power-Law Size

Distributions

Our Intuition

Examples

CCDFs

Zipf's law

Wild vs. Mild

Size rankings and

Size ranking <

Power-Law Size

Distributions

Our Intuition

Definition

Examples

CCDFs

CCDF

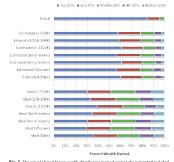
References

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ⇔

Wealth distribution in the United States: [13]



🙈 A highly watched video based on this research is here. 🗹

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

 $P(\text{size} = x) \sim c \, x^{-\gamma}$

where $0 < x_{\min} < x < x_{\max}$ and $\gamma > 1$.

 x_{\min} = lower cutoff, x_{\max} = upper cutoff

Negative linear relationship in log-log space:

 $\log_{10} P(x) = \log_{10} c - \gamma \log_{10} x$

We use base 10 because we are good people.

Power-Law Size Distributions Our Intuition Definition

Power-Law Size Distributions

Our Intuition

Wild vs. Mild

Size rankings and Zipf's law

Size ranking <

CCDF

References

7 of 71

Examples

Wild vs Mild

Size rankings and Zipf's law

Size ranking ⇔ CCDF

References

Power-Law Size Distributions Our Intuition

Definition

Wild vs. Mild CCDFs

Size rankings and Zipf's law

Size ranking ⇔ CCDF

References

¹2000 Ig Nobel winners 🗹

Size distributions:

Usually, only the tail of the distribution obeys a power law:

 $P(x) \sim c x^{-\gamma}$ for x large.

Still use term 'power-law size distribution.'

Other terms:

Fat-tailed distributions.

Heavy-tailed distributions.

Beware:

Market Inverse power laws aren't the only ones: lognormals , Weibull distributions , ...

Size distributions:

Many systems have discrete sizes *k*:

- Word frequency
- Node degree in networks: # friends, # hyperlinks, etc.

citations for articles, court decisions, etc.

$$P(k) \sim c \, k^{-\gamma} \label{eq:power_power}$$
 where $k_{\min} \leq k \leq k_{\max}$

- Obvious fail for k=0.
- Again, typically a description of distribution's tail.

Word rank and frequency:

Brown Corpus \square ($\sim 10^6$ words):

rank v	word				
	word	% q	rank	word	% q
1.	the	6.8872	1945.	apply	0.0055
2.	of	3.5839	1946.	vital	0.0055
3.	and	2.8401	1947.	September	0.0055
4.	to	2.5744	1948.	review	0.0055
5.	a	2.2996	1949.	wage	0.0055
6.	in	2.1010	1950.	motor	0.0055
7.	that	1.0428	1951.	fifteen	0.0055
8.	is	0.9943	1952.	regarded	0.0055
9.	was	0.9661	1953.	draw	0.0055
10.	he	0.9392	1954.	wheel	0.0055
11.	for	0.9340	1955.	organized	0.0055
12.	it	0.8623	1956.	vision	0.0055
13.	with	0.7176	1957.	wild	0.0055
14.	as	0.7137	1958.	Palmer	0.0055
15.	his	0.6886	1959.	intensity	0.0055

Later: Connect rankings and size distributions.

Jonathan Harris's (not quite dead) Wordcount: 🗹

A word frequency distribution explorer:

Power-Law Size Distributions

Our Intuition

Wild vs. Mild

Size rankings and Zipf's law

Size ranking <

Power-Law Size

Distributions

Our Intuition

Definition

Examples

CCDFs

Zipf's law

Wild vs Mild

Size rankings and

Size ranking ⇔ CCDF

Power-Law Size

Distributions

Our Intuition

Definition

Examples

CCDEs

Zipf's law

References

Wild vs. Mild

Size rankings and

13 of 71

12 of 71

Definition

Examples

CCDFs

11 of 71

Up goer five 🗹

The long tail of knowledge:

Take a scrolling voyage to the citational abyss, starting at the surface with the lonely, giant citaceans, moving down to the legion of strange, sometimes misplaced, unloved creatures, that dwell in Kahneman's Google Scholar page

Papers are the events, size is the number of citations

Natural to order by size or publication date.

The statistics of surprise—words:

First—a Gaussian example:

Power-Law Size Distributions

Our Intuition

Definition

Examples

CCDFs

CCDF

References

Power-Law Size Distributions

Our Intuition

Definition

Examples

CCDFs

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ⇔

References

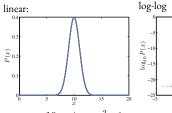
Wild vs. Mild

Size rankings and Zipf's law

Size ranking <

14 of 71

$$P(x)\mathrm{d}x = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}\mathrm{d}x$$

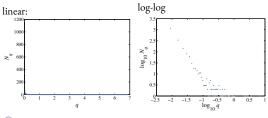


mean $\mu = 10$, variance $\sigma^2 = 1$.

 \clubsuit Activity: Sketch $P(x) \sim x^{-1}$ for x = 1 to $x = 10^7$.

The statistics of surprise—words:

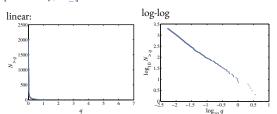
Raw 'probability' (binned) for Brown Corpus:



- q_w = normalized frequency of occurrence of word w (%).
- N_a = number of distinct words that have a normalized frequency of occurrence q.
- \Re e.g, $q_{\text{the}} \simeq 6.9\%$, $N_{q_{\text{the}}} = 1$.

The statistics of surprise—words:

Complementary Cumulative Distribution (for frequency or probability) $N_{>a}$:



Also known as the 'Exceedance Probability.'

Power-Law Size Distributions Our Intuition

Definition Examples Wild vs. Mild

CCDEs

Size rankings and Zipf's law Size ranking ⇔

References

Definition Examples Wild vs Mild

Power-Law Size

Distributions

Our Intuition

18 of 71

Power-Law Size Distributions

17 of 71

Our Intuition

Definition

Examples

CCDFs

Wild vs. Mild

Size rankings and Zipf's law

Size ranking \

References

Size rankings and Zipf's law

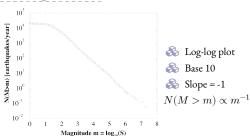
Size ranking ⇔ CCDF References

My, what big words you have ...

- Rest C capitalizes on word frequency following a heavily skewed frequency distribution with a decaying power-law tail.
- This Man Can Pronounce Every Word in the Dictionary (story here (3)
- Best of Dr. Bailly 🗹

The statistics of surprise:

Gutenberg-Richter law



Room both the very awkwardly similar Christensen et al. and Bak et al.:

"Unified scaling law for earthquakes" [4, 1]

The statistics of surprise:

Spin" by Kenneth Chang, March 13, 2011, NYT:

'What is perhaps most surprising about the Japan earthquake is how misleading history can be. In the past 300 years, no earthquake nearly that large—nothing larger than magnitude eight—had struck in the Japan subduction zone. That, in turn, led to assumptions about how large a tsunami might strike the coast.'

"It did them a giant disservice," said Dr. Stein of the geological survey. That is not the first time that the earthquake potential of a fault has been underestimated. Most geophysicists did not think the Sumatra fault could generate a magnitude 9.1 earthquake, ...'

Power-Law Size Distributions 20 of 71 Our Intuition

Examples Wild vs. Mild

CCDFs Size rankings and Zipf's law

Size ranking < References

Power-Law Size

Distributions

Our Intuition

21 of 71

Examples

CCDFs

Wild vs Mild

Size rankings and Zipf's law

Size ranking ⇔ CCDF

LLL

LL

"Geography and similarity of regional cuisines in China"

"On a class of skew distribution functions" 🗹

"Power laws, Pareto distributions and Zipf's law"

Contemporary Physics, **46**, 323–351, 2005. [12]

"Power-law distributions in empirical data"

Clauset, Shalizi, and Newman,

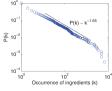
SIAM Review, **51**, 661–703, 2009. [5]

Biometrika, 42, 425-440, 1955. [16]

Herbert A. Simon.

M. E. J. Newman,

Zhu et al., PLoS ONE, 8, e79161, 2013. [19]



Fraction of ingredients that appear in at least k recipes.

Complementary Cumulative Distribution $P_{>}(k)$

Power-Law Size Distributions

23 of 71 Our Intuition

Definition

Examples

Wild vs. Mild CCDFs

Size rankings and Zipf's law Size ranking ⇔

References

Power-Law Size

Distributions

Our Intuition

Examples

Zipf's law

Wild vs Mild

Size rankings and

Size ranking ⇔ CCDF

References

Size distributions:

Some examples:

Earthquake magnitude (Gutenberg-Richter law): [9, 1] $P(M) \propto M^{-2}$

Power-Law Size Distributions

26 of 71

Our Intuition

Definition

Examples

CCDFs

Wild vs. Mild

Size rankings and Zipf's law

Size ranking <

References

Power-Law Size

Distributions

Our Intuition

Examples

CCDFs

Zipf's law

CCDF

References

Wild vs Mild

Size rankings and

Size ranking ⇔

& # war deaths: [15] $P(d) \propto d^{-1.8}$

Sizes of forest fires [8]

 $\red Sizes of cities: ^{[16]} P(n) \propto n^{-2.1}$

links to and from websites [2]

Note: Exponents range in error

Size distributions:

A Individual wealth (maybe): $P(W) \propto W^{-2}$.

 \clubsuit Distributions of tree trunk diameters: $P(d) \propto d^{-2}$.

The gravitational force at a random point in the universe: [10] $P(F) \propto F^{-5/2}$. (See the Holtsmark distribution \square and stable distributions .)

🚓 # sightings of birds per species (North American Breeding Bird Survey for 2003): [5] $P(k) \propto k^{-2.1\pm0.1}$.

More examples:

 \clubsuit # citations to papers: $^{[6,14]}P(k) \propto k^{-3}$.

 $\ \ \$ Diameter of moon craters: [12] $P(d) \propto d^{-3}$.

 \clubsuit # religious adherents in cults: [5] $P(k) \propto k^{-1.8\pm0.1}$

species per genus: [18, 16, 5] $P(k) \propto k^{-2.4 \pm 0.2}$

Power-Law Size Distributions Our Intuition Definition

Examples Wild vs. Mild CCDEs

Size rankings and Zipf's law Size ranking ⇔

References

Table 3 from Clauset, Shalizi, and Newman [5]:

Quantity	n	(x)	σ	$x_{\rm max}$	\hat{x}_{\min}	ά	$n_{\rm tail}$	P
count of word use	18 855	11.14	148.33	14086	7 ± 2	1.95(2)	2958 ± 987	0.4
protein interaction degree	1846	2.34	3.05	56	5 ± 2	3.1(3)	204 ± 263	0.3
metabolic degree	1641	5.68	17.81	468	4 ± 1	2.8(1)	748 ± 136	0.0
Internet degree	22 688	5.63	37.83	2583	21 ± 9	2.12(9)	770 ± 1124	0.2
telephone calls received	51 360 423	3.88	179.09	375 746	120 ± 49	2.09(1)	102592 ± 210147	0.6
intensity of wars	115	15.70	49.97	382	2.1 ± 3.5	1.7(2)	70 ± 14	0.2
terrorist attack severity	9101	4.35	31.58	2749	12 ± 4	2.4(2)	547 ± 1663	0.6
HTTP size (kilobytes)	226 386	7.36	57.94	10971	36.25 ± 22.74	2.48(5)	6794 ± 2232	0.0
species per genus	509	5.59	6.94	56	4 ± 2	2.4(2)	233 ± 138	0.1
bird species sightings	591	3384.36	10952.34	138 705	6679 ± 2463	2.1(2)	66 ± 41	0.5
blackouts (×10 ³)	211	253.87	610.31	7500	230 ± 90	2.3(3)	59 ± 35	0.6
sales of books (×10 ³)	633	1986.67	1396.60	19077	2400 ± 430	3.7(3)	139 ± 115	0.6
population of cities ($\times 10^3$)	19 447	9.00	77.83	8 009	52.46 ± 11.88	2.37(8)	580 ± 177	0.7
email address books size	4581	12.45	21.49	333	57 ± 21	3.5(6)	196 ± 449	0.1
forest fire size (acres)	203 785	0.90	20.99	4121	6324 ± 3487	2.2(3)	521 ± 6801	0.0
solar flare intensity	12 773	689.41	6520.59	231 300	323 ± 89	1.79(2)	1711 ± 384	1.0
quake intensity (×10 ³)	19 302	24.54	563.83	63 096	0.794 ± 80.198	1.64(4)	11697 ± 2159	0.0
religious followers (×10 ⁶)	103	27.36	136.64	1050	3.85 ± 1.60	1.8(1)	39 ± 26	0.4
freq. of surnames (×10 ³)	2753	50.59	113.99	2502	111.92 ± 40.67	2.5(2)	239 ± 215	0.2
net worth (mil. USD)	400	2388.69	4 167.35	46 000	900 ± 364	2.3(1)	302 ± 77	0.0
citations to papers	415 229	16.17	44.02	8904	160 ± 35	3.16(6)	3455 ± 1859	0.2
papers authored	401 445	7.21	16.52	1416	133 ± 13	4.3(1)	988 ± 377	0.9
hits to web sites	119 724	9.83	392.52	129641	2 ± 13	1.81(8)	50981 ± 16898	0.0
links to web sites	241 428 853	9.15	106 871.65	1 199 466	3684 ± 151	2.336(9)	28986 ± 1560	0.0

We'll explore various exponent measurement techniques in assignments.

From: "Quake Moves Japan Closer to U.S. and Alters Earth's

Power-Law Size Distributions 22 of 71 Our Intuition

Examples Wild vs. Mild CCDFs

Size rankings and Zipf's law Size ranking < CCDF

power-law size distributions

Gaussians versus power-law size distributions:

- Mediocristan versus Extremistan
- Mild versus Wild (Mandelbrot)
- Example: Height versus wealth.

THE BLACK SWAN

- See "The Black Swan" by Nassim
- Register of the Property of th swans are not that surprising ...

Nassim Nicholas Taleb

Turkeys ...

From "The Black Swan" [17]

Taleb's table [17]

Mediocristan/Extremistan

- When you observe for a while, you know what's going on/It takes a

Power-Law Size Distributions 29 of 71

Our Intuition

Examples Wild vs. Mild

CCDFs Size rankings and Zipf's law Size ranking ¢

Power-Law Size

Distributions

Our Intuition

30 of 71

Examples

CCDFs

Zipf's law

Wild vs. Mild

Size rankings and

Size ranking ⇔ CCDF

Power-Law Size

Distributions

Our Intuition

31 of 71

Examples

CCDEs

Zipf's law

References

Size ranking <

Wild vs. Mild

Size distributions:

Power-law size distributions are sometimes

Pareto distributions after Italian scholar Vilfredo Pareto.

- Pareto noted wealth in Italy was distributed unevenly (80/20 rule; misleading, see later).
- Term used especially by practitioners of the Dismal Science .

"The horror, the horror ..."

Moments:

All moments depend only on cutoffs.

No internal scale that dominates/matters.

Compare to a Gaussian, exponential, etc.

For many real size distributions: $2 < \gamma < 3$

- mean is finite (depends on lower cutoff)
- $\delta = \sigma^2 = \text{variance is 'infinite' (depends on upper cutoff)}$
- Width of distribution is 'infinite'
- \Re If $\gamma > 3$, distribution is less terrifying and may be easily confused with other kinds of distributions.

Insert assignment question

Most typical member is mediocre/Most typical is either giant or tiny

Winners get a small segment/Winner take almost all effects

very long time to figure out what's going on

- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the rare and accidental

Devilish power-law size distribution details:

Exhibit A:

Moments:

 \implies If $n \neq \gamma - 1$:

 \Re If $n=\gamma-1$:

 \Re Given $P(x) = cx^{-\gamma}$ with $0 < x_{\min} < x < x_{\max}$, the mean is $(\gamma \neq 2)$:

$$\langle x \rangle = \frac{c}{2-\gamma} \left(x_{\rm max}^{2-\gamma} - x_{\rm min}^{2-\gamma} \right). \label{eq:constraint}$$

 $\langle x^n \rangle = \int_x^{x_{\max}} x^n P(x) \, \mathrm{d}x = \frac{c}{n-\gamma+1} \left(x_{\max}^{n-\gamma+1} - x_{\min}^{n-\gamma+1} \right)$

where $c=rac{\gamma-1}{a^{-(\gamma-1)}-b^{-(\gamma-1)}}.$

 $\langle x^n \rangle = \frac{c}{|n - \gamma + 1|} \left| x_{\text{max}}^{n - \gamma + 1} - x_{\text{min}}^{n - \gamma + 1} \right|.$

 $\langle x^n \rangle = c \frac{x_{\text{max}}}{x}$

 \Re Because both $n-\gamma+1$ and $(x_{\max}^{n-\gamma+1}-x_{\min}^{n-\gamma+1})$ are either

negative or positive, we can write:

- A Mean 'blows up' with upper cutoff if $\gamma < 2$.
- & Mean depends on lower cutoff if $\gamma > 2$.

Insert assignment question

Moments Power-Law Siz Distributions

Our Intuition Examples

Power-Law Size Distributions

Our Intuition

Wild vs. Mild

Size rankings and Zipf's law

Size ranking <

References

CCDFs

Definition

32 of 71

Wild vs. Mild CCDFs

Size rankings and Size ranking ⇔ CCDF

Power-Law Size Distributions

Our Intuition

Definition

Wild vs. Mild

Zipf's law

Size ranking ⇔

References

Standard deviation is a mathematical convenience:

- Variance is nice analytically ...
- Another measure of distribution width:

Mean average deviation (MAD) = $\langle |x - \langle x \rangle| \rangle$

Solution For a pure power law with $2 < \gamma < 3$:

$$\langle |x-\langle x\rangle| \rangle$$
 is finite.

- But MAD is mildly unpleasant analytically ...
- We still speak of infinite 'width' if $\gamma < 3$.

How sample sizes grow ...

Given $P(x) \sim cx^{-\gamma}$:

& We can show that after n samples, we expect the largest sample to be²

$$x_1 \gtrsim c' n^{1/(\gamma-1)}$$

- Sampling from a finite-variance distribution gives a much slower growth with n.
- & e.g., for $P(x) = \lambda e^{-\lambda x}$, we find

$$x_1 \gtrsim \frac{1}{\sqrt{\ln n}}$$
.

Insert assignment question

Power-Law Size Distributions Our Intuition Definition

The PoCSverse

Power-Law Size Distributions

35 of 71

Our Intuition

Definition

Examples

Wild vs. Mild

Size rankings and Zipf's law

Size ranking \

Power-Law Size

Distributions

Our Intuition

36 of 71

Examples

Wild vs. Mild

Size rankings and

Size ranking ⇔ CCDF References

Zipf's law

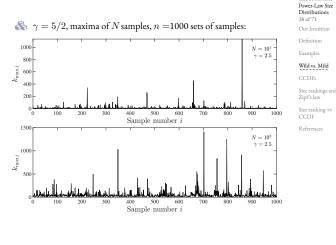
References

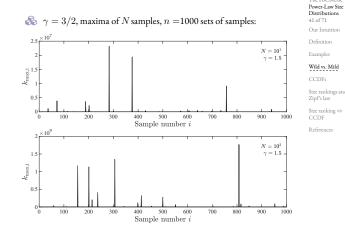
Wild vs. Mild

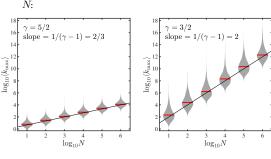
CCDFs

Size rankings and Zipf's law Size ranking <

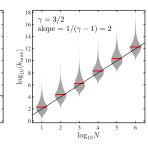
 $^{^2}$ Later, we see that the largest sample grows as n^{α} where α is the size-ranking

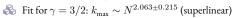






Scaling of expected largest value as a function of sample size





³95% confidence interval

The PoCSverse

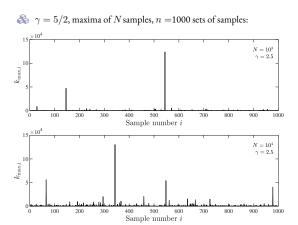
Examples

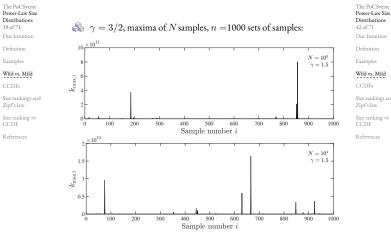
CCDFs

References

Wild vs. Mild

Size rankings and



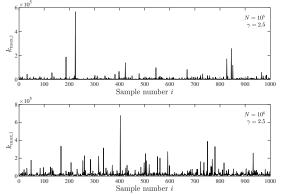


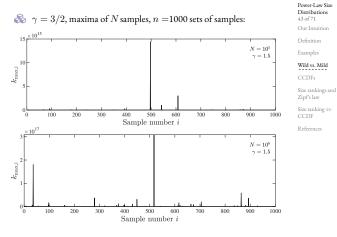
- Imagine a population of n people with variable x for individual wealth.
- \Re Define $N(x) = cx^{-\gamma}$ as the distribution of wealth x.
- \Re Must have $\int_{r}^{\infty} dx N(x) = n$.
- Total wealth W in the system: $W = \int_{x_{\min}}^{\infty} \mathrm{d}x \ x N(x).$
- \Re Imagine that the bottom $100 \, \theta_{\text{pop}}$ percent of the population holds $100 \, \theta_{\text{wealth}}$ percent of the wealth.
- \Leftrightarrow Find γ depends on θ_{pop} and θ_{wealth} as

$$\gamma = 1 + \frac{\ln \frac{1}{(1 - \theta_{pop})}}{\ln \frac{1}{(1 - \theta_{pop})} - \ln \frac{1}{(1 - \theta_{wath})}}.$$
 (1)

 \aleph Pleasant detail: x_{\min} does not matter.

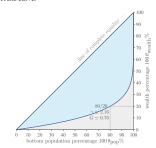
Insert assignment question





80/20, γ , and the Gini coefficent G:

Gini coefficient 2: Ratio of blue shape's area to triangle's area. 0 < G < 1Blue line is the "Lorenz curve."



Power-Law Size Distributions

The top 1% owns 52.3%, the top 0.1% 38.4%, the top 0.01% 27.9%, the top 10^{-7} % 5.6%, ...

Power-Law Size Distributions

44 of 71

Our Intuition

Wild vs. Mild

Size rankings and Zipf's law

Size ranking \

References

Power-Law Size Distributions 45 of 71 Our Intuition Examples

Wild vs. Mild CCDFs Size rankings and

Zipf's law Size ranking ⇔

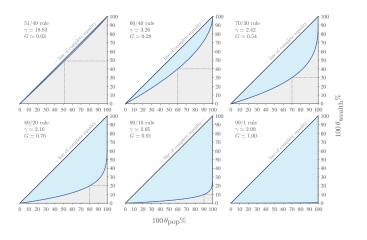
References

Our Intuition Definition

Wild vs. Mild

CCDFs Size rankings and Zipf's law

Size ranking ⇔ CCDF



99/1 rule:

 $\gamma \simeq 2.002$.

$100\theta_{ m pop}$	$100 heta_{ m wealth}$	$100(1-\theta_{\rm pop})$	$100(1-\theta_{\rm wealth})$
20	0.05	80	99.95
50	0.15	50	99.85
80	0.35	20	99.65
$100 - 10^{1}$	0.50	10^{1}	99.50
99	1	1	99
$100 - 10^{-1}$	1.50	10^{-1}	98.50
$100 - 10^{-2}$	1.99	10^{-2}	98.01
$100 - 10^{-3}$	2.48	10^{-3}	97.52
$100 - 10^{-4}$	2.97	10^{-4}	97.03
$100 - 10^{-5}$	3.46	10^{-5}	96.54
$100 - 10^{-6}$	3.94	10^{-6}	96.06
$100 - 10^{-7}$	4.42	10^{-7}	95.58
$100 - 10^{-8}$	4.90	10^{-8}	95.10
$100 - 10^{-9}$	5.38	10^{-9}	94.62
$100 - 10^{-10}$	5.85	10^{-10}	94.15
$100 - 10^{-11}$	6.32	10^{-11}	93.68
$100 - 10^{-12}$	6.79	10^{-12}	93.21
$100 - 10^{-13}$	7.26	10^{-13}	92.74

Gini coefficent:

 $G = \left\{ \begin{array}{ll} 1 & \text{if } 1 < \gamma \leq 2, \\ \frac{1}{1 + 2(\gamma - 2)} & \text{if } \gamma > 2. \end{array} \right.$

Insert assignment question

The 51/49 rule:

 $\sim \sim 18.8$

γ = 10.0.			
$100\theta_{ m pop}$	$100 heta_{ m wealth}$	$100(1-\theta_{\rm pop})$	$100(1-\theta_{\rm wealth})$
20	18.99	80	81.01
51	49	49	51
80	78.11	20	21.89
90	88.62	10	11.38
99	98.71	1	1.29
$100 - 10^{-1}$	99.85	10^{-1}	0.15
$100 - 10^{-2}$	99.98	10^{-2}	0.02
$100 - 10^{-3}$	100.00	10^{-3}	0.00

48 of 71 Our Intuition

Definition Examples

The PoCSverse Power-Law Size Distributions

Wild vs. Mild CCDFs

Size rankings and Zipf's law Size ranking ⇔ CCDF

80/20 rule:

	$100\theta_{ m pop}$	$100 heta_{ m wealth}$	$100(1-\theta_{\rm pop})$	$100(1-\theta_{\rm wealth})$
	20	3.05	80	96.95
	50	9.16	50	90.84
	80	20	20	80
	90	27.33	10	72.67
	99	47.19	1	52.81
	$100 - 10^{-1}$	61.62	10^{-1}	38.38
	$100 - 10^{-2}$	72.11	10^{-2}	27.89
	$100 - 10^{-3}$	79.73	10^{-3}	20.27
$\gamma \simeq 2.16$.	$100 - 10^{-4}$	85.27	10^{-4}	14.73
	$100 - 10^{-5}$	89.30	10^{-5}	10.70
	$100 - 10^{-6}$	92.22	10^{-6}	7.78
	$100 - 10^{-7}$	94.35	10^{-7}	5.65
	$100 - 10^{-8}$	95.89	10^{-8}	4.11
	$100 - 10^{-9}$	97.02	10^{-9}	2.98
	$100 - 10^{-10}$	97.83	10^{-10}	2.17
	$100 - 10^{-11}$	98.42	10^{-11}	1.58
	$100 - 10^{-12}$	98.85	10^{-12}	1.15
	$100 - 10^{-13}$	99.17	10^{-13}	0.83

Wild vs. Mild CCDFs

Power-Law Size

Distributions

Our Intuition

Definition

Examples

49 of 71

Size rankings and Zipf's law Size ranking ⇔

CCDF References

Complementary Cumulative Distribution Function:

CCDF:

8

$$P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x)$$

8

$$= \int_{x'=x}^{\infty} P(x') \mathrm{d}x'$$

$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} \mathrm{d}x'$$

8

$$= \left. \frac{1}{-\gamma + 1} (x')^{-\gamma + 1} \right|_{x' = x}^{\infty}$$

8

 $\propto x^{-(\gamma-1)}$

Complementary Cumulative Distribution Function:

CCDF:

8

The PoCSverse Power-Law Size Distributions

50 of 71

Our Intuition

Definition

Wild vs. Mild

Size rankings and Zipf's law

Size ranking <

References

Power-Law Size Distributions

Our Intuition

Definition

Examples

CCDFs

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ⇔ CCDF

Power-Law Size Distributions

Our Intuition

Definition

Examples Wild vs. Mild

CCDFs

Zipf's law

CCDF

References

Size rankings and

Size ranking ⇔

References

CCDFs

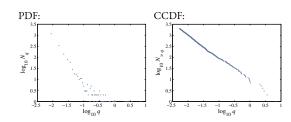
CCDF

 $P_>(x) \propto x^{-(\gamma-1)}$

Use when tail of P follows a power law.

Increases exponent by one.

Useful in cleaning up data.



Complementary Cumulative Distribution Function:

Same story for a discrete variable: $P(k) \sim ck^{-\gamma}$.

 $P_{>}(k) = P(k' \ge k)$

$$= \sum_{k'=k}^{\infty} P(k)$$

$$\propto k^{-(\gamma-1)}$$

Use integrals to approximate sums.

"Zipfian" size-rank plots

George Kingsley Zipf:

Noted various rank distributions have power-law tails, often with exponent -1 (word frequency, city sizes, ...)

"Human Behaviour and the Principle of Least-Effort" a. by G. K. Zipf (1949). [20]

We'll study Zipf's law in depth ...

Power-Law Size Distributions Our Intuition

Power-Law Size Distributions

Our Intuition

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ⇔

Power-Law Size Distributions

54 of 71

Definition

Examples

CCDFs

Zipf's law

Wild vs Mild

Size rankings and

Size ranking ⇔ CCDF

References

Our Intuition

CCDFs

CCDF

References

Definition

53 of 71

Definition

Wild vs. Mild CCDFs

Size rankings and Zipf's law

Size ranking ⇔ CCDF

"Zipfian" size-rank plots

Zipf's way:

- Given a collection of entities, rank them by size, largest to
- S_r = the size of the rth ranked entity.
- General term: "Size ranking"
- r = 1 corresponds to the largest size.
- & Example: S_1 could be the frequency of occurrence of the most common word in a text.
- Zipf's observation:

$$S_r \propto r^{-\alpha}$$

with α often close to 1.

Misrankings

The "biggest" thing is rank #1, otherwise:

- 3 "USA #195!"4
- "USA #195!"
- "USA #195!"
- "USA #195!"

More:

- Size distribution connects with '#1-is-biggest' 'size' ranking only
- Main form of ranking by decreasing 'size' is robust to low sampling of small 'size' entities (the tail 'fills in').

Size ranking example:

time 🖸

Power-Law Size Distributions 56 of 71

Wild vs. Mild CCDFs

Size rankings and ZipPs law

Size ranking ¢

Examples

CCDFs

CCDF

Wild vs Mild

Size rankings and Zipf's law

Power-Law Size

Distributions

58 of 71 Our Intuition

Examples

Wild vs. Mild

Size rankings and

Zipf's law Size ranking ¢

CCDF

*cel Term $_{\rm jo}$ Occurence

Incel typology:

Power-Law Size Distributions 57 of 71 Our Intuition

"Zipf's Law in the Popularity Distribution of Chess Openings"

"The incel lexicon: Deciphering the emergent

cryptolect of a global misogynistic community"

Blasius and Tönjes,

Gothard et al.,

volcel

truecel

 10^{1}

framecel

dogcel

 10^{2}

Rank

militarycel

dotacel

 10^{3}

, 2021. [7]

incel

 10^{0}

Phys. Rev. Lett., **103**, 218701, 2009. [3]

- & Examined all games of varying game depth d in a set of chess
- n = popularity = how many times a specific game path appears indatabases
- $\Re S(n;d)$ = number of depth d games with popularity n.
- Show "the frequencies of opening moves are distributed according to a power law with an exponent that increases linearly with the game depth, whereas the pooled distribution of all opening weights follows Zipf's law with universal exponent."
- Propose hierarchical fragmentation model that produces self-similar game trees.

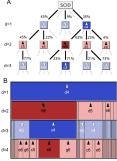
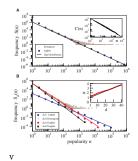


FIG. 1 (color online). (a) Schematic representation of the weighted game tree of cless based on the SciIIAME [6] for the first three half moves. Each node indicates a state of the game-with the schematic particle of the schematic particle of the with the branching matter, 2, botted lines symbolize other game continuations, which are not shown. (b) Alternative representa-tion emphasizing the successive segmentation of the set of games, here indicated for games following a 1.44 opening until the fourth half move d = 4. Each node or is represented by a box. of a size proportional to its frequency n_{σ} . In the subsequent half move these games split into subsets (indicated vertically below) and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian



VIII. 2 (color online). (a) Histogram of weight frequencies S(n) of openings up to d-d bin the Scid database and with logarithmic binning. A straight line lift (not shown) yields an occupancy of the straight S(n) to S(

Size distributions:

Power-Law Size Distributions

Our Intuition

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ¢ CCDF

References

The PoCSverse

Power-Law Size

Distributions

Our Intuition

Examples

CCDFs

Wild vs Mild

Size rankings and Zipf's law

Size ranking <

Power-Law Size

Distributions

Our Intuition

Definition

Examples

CCDFs

Wild vs. Mild

Size rankings and Zipt's law

Size ranking ⇔

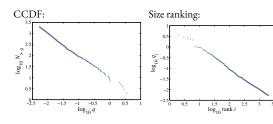
References

CCDFs

Definition

59 of 71

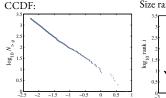
Brown Corpus (1,015,945 words):

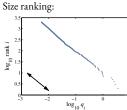


- The, of, and, to, a, ...= 'objects'
- Size' = word frequency
- Beep: (Important) CCDF and size-ranking plots are related ...

Size distributions:

Brown Corpus (1,015,945 words):





- The, of, and, to, a, ... = 'objects'
- Size' = word frequency
- Beep: (Important) CCDF and size-ranking plots are related ...

Observe:

- $NP_{>}(x)$ = the number of objects with size at least xwhere N = total number of objects.
- \Re If an object has size x_r , then $NP_>(x_r)$ is its rank r.
- 备 So

$$x_r \propto r^{-\alpha} = (NP_{\geq}(x_r))^{-\alpha}$$

 $\propto x_r^{-(\gamma-1)(-\alpha)}$ since $P_>(x) \sim x^{-(\gamma-1)}$.

We therefore have $1 = -(\gamma - 1)(-\alpha)$ or:

$$\alpha = \frac{1}{\gamma - 1}$$

A rank distribution exponent of $\alpha = 1$ corresponds to a size distribution exponent $\gamma = 2$.

Power-Law Size Distributions Our Intuition

Power-Law Size Distributions

62 of 71

Examples

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ⇔ CCDF

Power-Law Size

Distributions

Our Intuition

Examples

CCDFs

Zipf's law

Wild vs Mild

Size rankings and

Size ranking ⇔ ČČDF

Our Intuition

Definition

Wild vs. Mild CCDEs

Size rankings and Zipf's law

Size ranking ⇔

CCDF

Nature (2014):

Most cited papers of all

⁴As of August 2024 . Not simple agreed upon by all

Nutshell for power-law size distributions and size-rank orderings:

Heavy-tailed distributions abound.

Some are power-law size distributions.

 $Rightharpoonup Continuous: P(x) \sim x^{-\gamma}$, discrete: $P(k) \sim ck^{-\gamma}$

A Mean 'blows up' with upper cutoff if $\gamma < 2$.

 \Longrightarrow Mean depends on lower cutoff if $\gamma > 2$.

< 2: Typical sample is large.

Complementary Cumulative Distribution Function (CCDF): $P(x) \propto x^{-(\gamma-1)}$ and $P_{>}(k) = k^{-(\gamma-1)}$

Size of largest sample from n samples grows as:

$$x_1 \gtrsim c' n^{1/(\gamma-1)}$$

More with the nutshelling:

Size rankings: Order types from "biggest" to "smallest" size S.

Widely observed: S_r is highly skewed.

When scaling is apparent:

$$S_r \propto r^{-\alpha}$$

& Claim: α often close to 1. "Zipf's law":

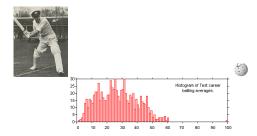
$$S_r \propto r^{-1}.$$

& Scalings of size distribution (γ) and size ranking (α) are connected:

$$\alpha = \frac{1}{\gamma - 1}$$
 and $\gamma = 1 + \frac{1}{\alpha}$.

The Don.

Extreme deviations in test cricket:



Don Bradman's batting average = 166% next best.

That's pretty solid.

& Later in the course: Understanding success is the Mona Lisa like Don Bradman?

The PoCSverse Power-Law Size Distributions

65 of 71

Wild vs. Mild

CCDFs Size rankings and Zipf's law

Size ranking ⇔ CCDF

Power-Law Size

Distributions

Our Intuition

66 of 71

Examples

Zipf's law

Wild vs Mild

Size rankings and

Size ranking ⇔ ČČDF

Power-Law Size

Distributions

Our Intuition

Definition

Examples

CCDEs

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ⇔ ČČDF

Reference

References I

[1] P. Bak, K. Christensen, L. Danon, and T. Scanlon. Unified scaling law for earthquakes. Phys. Rev. Lett., 88:178501, 2002. pdf

A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509-511, 1999. pdf

B. Blasius and R. Tönjes. Zipf's law in the popularity distribution of chess openings. Phys. Rev. Lett., 103:218701, 2009. pdf

[4] K. Christensen, L. Danon, T. Scanlon, and P. Bak. Unified scaling law for earthquakes. Proc. Natl. Acad. Sci., 99:2509-2513, 2002. pdf

References II

[5] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51:661-703, 2009. pdf

D. J. de Solla Price. Networks of scientific papers. Science, 149:510-515, 1965. pdf

K. Gothard, D. R. Dewhurst, J. A. Minot, J. L. Adams, C. M. 5-Danforth, and P. S. Dodds. The incel lexicon: Deciphering the emergent cryptolect of a global misogynistic community, 2021. Available online at https://arxiv.org/abs/2105.12006. pdf

P. Grassberger. Critical behaviour of the Drossel-Schwabl forest fire model. New Journal of Physics, 4:17.1−17.15, 2002. pdf 🗹

References III

[9] B. Gutenberg and C. F. Richter. Earthquake magnitude, intensity, energy, and acceleration. Bull. Seism. Soc. Am., 499:105–145, 1942. pdf 🗹

[10] J. Holtsmark. Über die verbreiterung von spektrallinien. Ann. Phys., 58:577–630, 1919. pdf

[11] R. Munroe. Thing Explainer: Complicated Stuff in Simple Words. Houghton Mifflin Harcourt, 2015.

[12] M. E. J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46:323–351, 2005. pdf

References IV

Power-Law Size Distributions

Our Intuitio

Wild vs. Mild

Size rankings and Zipf's law

Size ranking ¢

References

Power-Law Siz

Distributions

Our Intuition

Examples

Wild vs. Mild

Size rankings and

Size ranking ⇔ CCDF

References

CCDFs

CCDF

68 of 71

[13] M. I. Norton and D. Ariely. Building a better America—One wealth quintile at a time. Perspectives on Psychological Science, 6:9–12, 2011. pdf

[14] D. D. S. Price. A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, pages 292-306, 1976. pdf

[15] L. F. Richardson. Variation of the frequency of fatal quarrels with magnitude. J. Amer. Stat. Assoc., 43:523-546, 1949.

[16] H. A. Simon. On a class of skew distribution functions. Biometrika, 42:425-440, 1955. pdf

References V

[17] N. N. Taleb. The Black Swan. Random House, New York, 2007.

[18] G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21-87, 1925. pdf

[19] Y.-X. Zhu, J. Huang, Z.-K. Zhang, Q.-M. Zhang, T. Zhou, and Y.-Y. Ahn. Geography and similarity of regional cuisines in China. PLoS ONE, 8:e79161, 2013. pdf

[20] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Power-Law Size Distributions Our Intuition Examples

Power-Law Size Distributions

71 of 71

Examples

Wild vs. Mild

Size rankings and Zipf's law

Size ranking <

CCDF

References

Our Intuition

Wild vs Mild

Size rankings and Zipf's law Size ranking ⇔ CCDF

References

Power-Law Siz Distributions Our Intuitio Definition

Examples Wild vs. Mild CCDEs

Size rankings and Zipf's law Size ranking ⇔