Mechanisms for Generating Power-Law Size Distributions, Part 1

Last updated: 2024/09/26, 14:34:21 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024–2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Power-Law Mechanisms, Pt. 1 1 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

These slides are brought to you by:

The PoCSverse Power-Law Mechanisms, Pt. 1 2 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Power-Law Mechanisms, Pt. 1 3 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations
Death and Sports

Fractional Brownian

Outline

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References

The PoCSverse Power-Law Mechanisms, Pt. 1 4 of 49

Random Walks

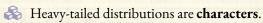
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



Some of these distributions have power-law tails.

Measured exponents (γ 's and α 's) vary across systems (and measurers).

What's their origin story?

The PoCSverse Power-Law Mechanisms, Pt. 1 5 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

The Boggoracle Speaks:

The PoCSverse Power-Law Mechanisms, Pt. 1 6 of 49

Random Walks

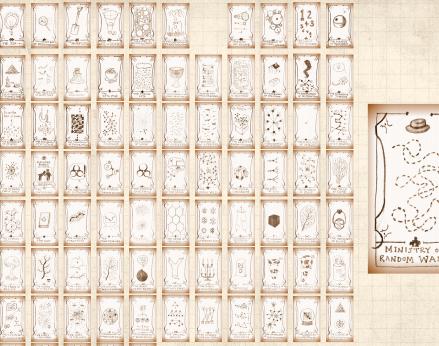
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion





The PoCSverse Power-Law Mechanisms, Pt. 1 8 of 49

Random Walks

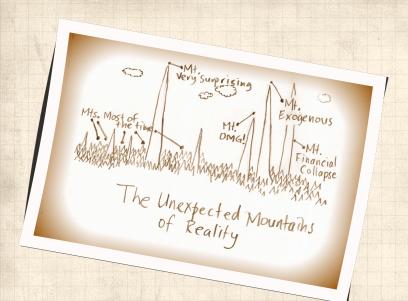
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



The PoCSverse Power-Law Mechanisms, Pt. 1 9 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Mechanisms:

A powerful story in the rise of complexity:

structure arises out of randomness.

& Exhibit A: Random walks.

The essential random walk:

One spatial dimension.

Time and space are discrete

Random walker (e.g., a zombie texter \Box) starts at origin x = 0.

 \clubsuit Step at time t is ϵ_t :

$$\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/2 \end{array} \right.$$

The PoCSverse Power-Law Mechanisms, Pt. 1 10 of 49

Random Walks

The First Return Problem

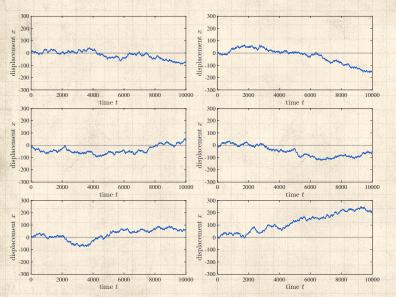
Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

A few random random walks:



The PoCSverse Power-Law Mechanisms, Pt. 1 11 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Random walks:

Displacement after t steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle = 0$$

- At any time step, we 'expect' our zombie texter to be back at their starting place.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our texting undead friend lurching back to x=0 must diminish, right?

The PoCSverse Power-Law Mechanisms, Pt. 1 12 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

$$\begin{aligned} &\operatorname{Var}(x_t) = \operatorname{Var}\left(\sum_{i=1}^t \epsilon_i\right) \\ &= \sum_{i=1}^t \operatorname{Var}\left(\epsilon_i\right) = \sum_{i=1}^t 1 = t \end{aligned}$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

$$\sigma = t^{1/2}$$

A non-trivial scaling law arises out of additive aggregation or accumulation.

The PoCSverse Power-Law Mechanisms, Pt. 1 13 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Great moments in Televised Random Walks 2:

Plinko! Tfrom the Price is Right.

Plinko failure .

Also known as the bean machine , the quincunx (simulation) , and the Galton box.

The PoCSverse Power-Law Mechanisms, Pt. 1 14 of 49

Random Walks

The First Return

Random River Networks

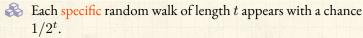
Scaling Relations

Death and Sports

Fractional Brownian Motion

Random walk basics:

Counting random walks:



We'll be more interested in how many random walks end up at the same place.

 \Re Define N(i, j, t) as # distinct walks that start at x = i and end at x = j after t time steps.

 $\ensuremath{\mathfrak{S}}$ Random walk must displace by +(j-i) after t steps.

insert assignment question

$$N(i,j,t) = \binom{t}{(t+j-i)/2}$$

The PoCSverse Power-Law Mechanisms, Pt. 1 15 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

How does $P(x_t)$ behave for large t?

 $\ensuremath{\mathfrak{S}}$ Take time t=2n to help ourselves.

 $x_{2n} \in \{0, \pm 2, \pm 4, \dots, \pm 2n\}$

 $\Re x_{2n}$ is even so set $x_{2n} = 2k$.

& Using our expression N(i,j,t) with i=0,j=2k, and t=2n, we have

$$\Pr(x_{2n} \equiv 2k) \propto \binom{2n}{n+k}$$

For large *n*, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$\Pr(x_t \equiv x) \simeq \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.$$

Insert assignment question 🗹

The whole is different from the parts.

#nutritious

The PoCSverse Power-Law Mechanisms, Pt. 1 16 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

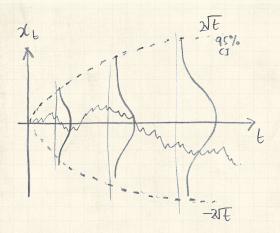
Death and Sports

Motion Brownia

References

See also: Stable Distributions

Universality is also not left-handed:



A This is Diffusion ☑: the most essential kind of spreading (more later).

2

View as Random Additive Growth Mechanism.

The PoCSverse Power-Law Mechanisms, Pt. 1 17 of 49

Random Walks

The First Return Problem

Random River Networks

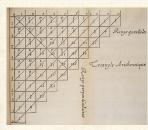
Scaling Relations

Death and Sports

Fractional Brownian Motion

So many things are connected:

Pascal's Triangle



Could have been the Pyramid of Pingala 1 or the Triangle of Khayyam, Jia Xian, Tartaglia, ...

The PoCSverse Power-Law Mechanisms, Pt. 1 18 of 49

Random Walks

The First Return Problem

Random River Networks

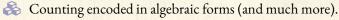
Scaling Relations

Death and Sports

Motion

References

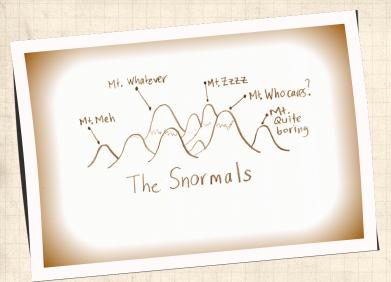
Binomials tend towards the Normal.



$$(h+t)^n = \sum_{k=0}^n \binom{n}{k} h^k t^{n-k} \text{ where } \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

¹Stigler's Law of Eponymy

✓ showing excellent form again.



The PoCSverse Power-Law Mechanisms, Pt. 1 19 of 49

Random Walks

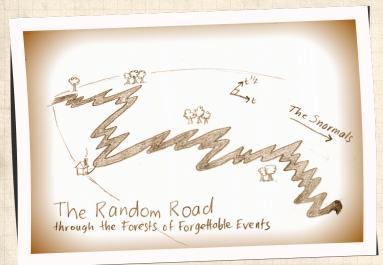
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



The PoCSverse Power-Law Mechanisms, Pt. 1 20 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Random walks are even weirder than you might think...

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0.
- & In fact: $\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$
- & Even crazier:

The expected time between tied scores = ∞

See Feller, Intro to Probability Theory, Volume I [5]

The PoCSverse Power-Law Mechanisms, Pt. 1 21 of 49

Random Walks

The First Return Problem

Random River Networks

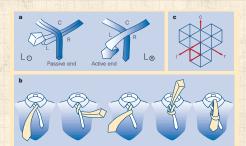
Scaling Relations

Death and Sports

Motion Brownian

Applied knot theory:

"Designing tie knots by random walks" Fink and Mao,
Nature, **398**, 31–32, 1999. [6]



Rigure 1 All diagrams are drawn in the frame of reference of the mirror image of the actual is, a. The two ways of beginning a knot, $L_{\rm i}$ and $L_{\rm in}$. For knots beginning with $L_{\rm in}$ the tier must begin inside-out, $B_{\rm i}$, $B_{\rm in}$ the formal denoted by the sequence $L_{\rm in}$ $R_{\rm in}$ $L_{\rm in}$ $C_{\rm in}$. A knot may be represented by a persistent random wells on a triangular lattice. The example shown is the four-in-hand, indicated by the wall 1116.

The PoCSverse Power-Law Mechanisms, Pt. 1 22 of 49

Random Walks

The First Return

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Applied knot theory:

	Table 1 Aesthetic tie knots							
	h	γ	γ/h	K(h, γ)	S	b	Name	Sequence
	3	1	0.33	1	0	0		L _o R _⊗ C _o T
	4	1	0.25	1	-1	1	Four-in-hand	$L_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
	5	2	0.40	2	-1	0	Pratt knot	$L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
	6	2	0.33	4	0	0	Half-Windsor	$L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
	7	2	0.29	6	-1	1		$L_{\circ}R_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
	7	3	0.43	4	0	1		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
	8	2	0.25	8	0	2		$L_{\otimes}R_{\circ}L_{\otimes}C_{\circ}R_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
	8	3	0.38	12	-1	0	Windsor	$L_{\otimes}C_{\circ}R_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
	9	3	0.33	24	0	0		$L_{\circ}R_{\otimes}C_{\circ}L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
	9	4	0.44	8	-1	2		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
Knote are characterized by half-winding number h centre number a centre fraction w/h knote per class K/h a)								h knoto por ologo Klh)

symmetry s. balance b. name and sequence.

h = number of moves

 $\gamma = \text{number of center}$ moves

 $\& K(h,\gamma) =$

 $s = \sum_{i=1}^{h} x_i \text{ where } x_i = -1$ for L and $x_i = +1$ for R.

 $b = \frac{1}{2} \sum_{i=2}^{h-1} |\omega_i + \omega_{i-1}|$ where $\omega = \pm 1$ represents winding direction.

The PoCSverse Power-Law Mechanisms, Pt. 1 23 of 49

Random Walks

The First Return

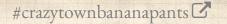
Random River Networks

Scaling Relations

Death and Sports

Motion

Random walks



The problem of first return:

 \Leftrightarrow What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?

Will our zombie texter always return to the origin?

What about higher dimensions?

Reasons for caring:

- 1. We will find a power-law size distribution with an interesting exponent.
- 2. Some physical structures may result from random walks.
- 3. We'll start to see how different scalings relate to each other.

The PoCSverse Power-Law Mechanisms, Pt. 1 24 of 49 Random Walks

The First Return Problem

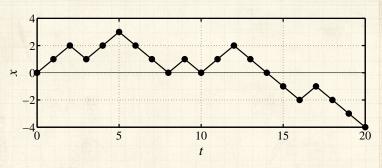
Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian

For random walks in 1-d:



A return to origin can only happen when t = 2n.

 \clubsuit In example above, returns occur at t=8, 10, and 14.

 \Leftrightarrow Call $P_{\rm fr}(2n)$ the probability of first return at t=2n.

Probability calculation

≡ Counting problem (combinatorics/statistical mechanics).

Idea: Transform first return problem into an easier return problem. The PoCSverse Power-Law Mechanisms, Pt. 1 25 of 49 Random Walks

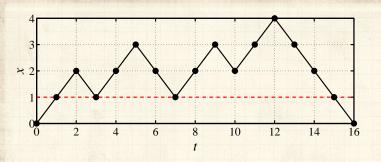
The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



- Observe walk first returning at t=16 stays at or above x=1 for $1 \le t \le 15$ (dashed red line).
- Now want walks that can return many times to x = 1.
- $\begin{array}{l} \iff P_{\mathrm{fr}}(2n) = \\ 2 \cdot \frac{1}{2} Pr(x_t \geq 1, 1 \leq t \leq 2n-1, \text{ and } x_1 = x_{2n-1} = 1) \end{array}$
- \clubsuit The 2 accounts for texters that first lurch to x = -1.

The PoCSverse Power-Law Mechanisms, Pt. 1 26 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Motion Brownian

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, N(i, j, t) is the # of possible walks between x = i and x = j taking t steps.
- $\ref{Solution}$ Consider all paths starting at x=1 and ending at x=1 after t=2n-2 steps.
- All Idea: If we can compute the number of walks that hit x=0 at least once, then we can subtract this from the total number to find the ones that maintain $x \ge 1$.
- We'll use a method of images to identify these excluded walks.

The PoCSverse Power-Law Mechanisms, Pt. 1 27 of 49

Random Walks

The First Return Problem

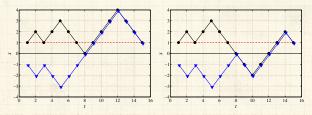
Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Examples of excluded walks:



Key observation for excluded walks:

- For any path starting at x=1 that hits 0, there is a unique matching path starting at x=-1.
- Matching path first mirrors and then tracks after first reaching x=0.
- \implies # of t-step paths starting and ending at x=1 and hitting x=0 at least once
 - = # of t-step paths starting at x=-1 and ending at x=+1 = N(-1, +1, t)

The PoCSverse Power-Law Mechanisms, Pt. 1 28 of 49

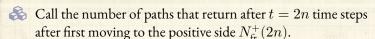
Random Walks
The First Return
Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



 \Re For paths that first move to the negative side: $N_{\rm fr}^-(2n)$.

$$\Re$$
 So $N_{\text{fr}}^+(2n) = N(+1, +1, 2n-2) - N(-1, +1, 2n-2)$

Negative side:

$$N_{\mathrm{fr}}^-(2n) = N(-1,-1,2n-2) - N(+1,-1,2n-2)$$

Symmetry: $N_{\rm fr}^{+}(2n) = N_{\rm fr}^{-}(2n)$

 $\ \,$ Both $N_{\rm fr}(2n)$ and the one sided $N_{\rm fr}^+(2n)$ are of mathematical and physical interest.

A Overall:

$$\begin{split} N_{\mathrm{fr}}(2n) &= N_{\mathrm{fr}}^+(2n) + N_{\mathrm{fr}}^-(2n) = 2N_{\mathrm{fr}}^+(2n) \\ &= 2N(+1,+1,2n-2) - 2N(-1,+1,2n-2). \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 1 29 of 49 Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Probability of first return:

Insert assignment question 2:

$$N_{
m fr}(2n) \sim rac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}.$$

Normalized number of paths gives probability.

 \clubsuit Total number of possible paths = 2^{2n} .

$$\begin{split} P_{\mathrm{fr}}(2n) &= \frac{1}{2^{2n}} N_{\mathrm{fr}}(2n) \\ &\simeq \frac{1}{2^{2n}} \frac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}} \\ &= \frac{1}{\sqrt{2\pi}} (2n)^{-3/2} \propto t^{-3/2}. \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 1 30 of 49

Random Walks
The First Return
Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian

- \Leftrightarrow We have $P(t) \propto t^{-3/2}$, $\gamma = 3/2$.
- Same scaling holds for continuous space/time walks.
- P(t) is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite. #totalmadness
- & Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions 2:

- Walker in d=2 dimensions must also return
- $\mbox{\&}$ Walker may not return in $d\geq 3$ dimensions
- Associated human genius: George Pólya 🗹

The PoCSverse Power-Law Mechanisms, Pt. 1 31 of 49

Random Walks
The First Return
Problem

Random River Networks

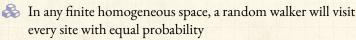
Scaling Relations

Death and Sports

Fractional Brownia

Random walks

On finite spaces:



Call this probability the Invariant Density of a dynamical system

Non-trivial Invariant Densities arise in chaotic systems.

On networks:

On networks, a random walker visits each node with frequency

node degree #groovy

Equal probability still present: walkers traverse edges with equal frequency.

#totallygroovy

The PoCSverse Power-Law Mechanisms, Pt. 1 32 of 49

Random Walks
The First Return

Problem

Random River

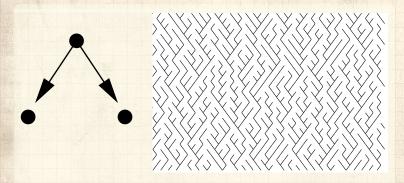
Random River Networks

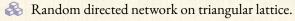
Scaling Relations

Death and Sports

Fractional Brownian Motion

Scheidegger Networks [17,4]





Toy model of real networks.

'Flow' is southeast or southwest with equal probability.

The PoCSverse Power-Law Mechanisms, Pt. 1 33 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Scheidegger networks

Creates basins with random walk boundaries.

Note: The contraction of the con random walk with increments:

$$\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/4 \end{array} \right.$$

Random walk with probabilistic pauses.

Basin termination = first return random walk problem.

 \Leftrightarrow For real river networks, generalize to $P(\ell) \propto \ell^{-\gamma}$.

The PoCSverse Power-Law Mechanisms, Pt. 1 34 of 49

Random Walks The First Return

Random River Networks

Scaling Relations

Death and Sports

Motion

Connections between exponents:

Solution For a basin of length ℓ , width $\propto \ell^{1/2}$

 \clubsuit Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$

A Invert: $\ell \propto a^{2/3}$

 $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$

 \mathbf{R} **Pr**(basin area = a)da= **Pr**(basin length $= \ell$)d ℓ $\propto \ell^{-3/2} d\ell$ $\propto (a^{2/3})^{-3/2}a^{-1/3}da$ $= a^{-4/3} da$ $=a^{-\tau}da$

The PoCSverse Power-Law Mechanisms, Pt. 1 35 of 49 Random Walks

The First Return

Random River Networks

Scaling Relations

Death and Sports

Motion

Connections between exponents:

Both basin area and length obey power law distributions

Observed for real river networks

 \clubsuit Reportedly: $1.3 < \tau < 1.5$ and $1.5 < \gamma < 2$

Generalize relationship between area and length:

Hack's law [10]:

 $\ell \propto a^h$.

For real, large networks [13] $h \simeq 0.5$ (isometric scaling)

 \implies Smaller basins possibly h > 1/2 (allometric scaling).

Models exist with interesting values of h.

A Plan: Redo calc with γ , τ , and h.

The PoCSverse Power-Law Mechanisms, Pt. 1 36 of 49

Random Walks The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Motion

Connections between exponents:

$$\ell \propto a^h, \ P(a) \propto a^{- au}, \ {\rm and} \ P(\ell) \propto \ell^{-\gamma}$$

$$\Leftrightarrow$$
 Find τ in terms of γ and h .

$$\begin{aligned} & \textbf{Pr}(\text{basin area} = a) da \\ & = \textbf{Pr}(\text{basin length} = \ell) d\ell \\ & \propto \ell^{-\gamma} d\ell \\ & \propto (a^h)^{-\gamma} a^{h-1} da \\ & = a^{-(1+h(\gamma-1))} da \end{aligned}$$

$$\tau = 1 + h(\gamma - 1)$$

Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

The PoCSverse Power-Law Mechanisms, Pt. 1 37 of 49

Random Walks
The First Return

Problem

Random River

Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Connections between exponents:

With more detailed description of network structure, $\tau=1+h(\gamma-1)$ simplifies to: ^[3]

$$\tau = 2 - h$$

and

$$\gamma = 1/h$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize Universality class with independent exponents.

The PoCSverse Power-Law Mechanisms, Pt. 1 38 of 49

Random Walks
The First Return
Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

Death ...

Failure:

A very simple model of failure/death

 x_t = entity's 'health' at time t

 \Leftrightarrow Start with $x_0 > 0$.

"Explaining mortality rate plateaus"

Weitz and Fraser,

Proc. Natl. Acad. Sci., 98, 15383-15386, 2001. [18]

The PoCSverse Power-Law Mechanisms, Pt. 1 39 of 49

Random Walks The First Return

Random River

Networks Scaling Relations

Death and Sports

Motion

... and the NBA:

Basketball and other sports [2]:

Three arcsine laws \square (Lévy [12]) for continuous-time random walk lasting time T:

$$\frac{1}{\pi} \frac{1}{\sqrt{t(T-t)}}.$$

The arcsine distribution 2 applies for:

- (1) fraction of time positive,
- (2) the last time the walk changes sign, and (3) the time the maximum is achieved.
- $\ensuremath{\mathfrak{S}}$ Well approximated by basketball score lines $^{[8,\,2]}$.
- Australian Rules Football has some differences [11].

The PoCSverse Power-Law Mechanisms, Pt. 1 40 of 49

Random Walks
The First Return

Problem
Random River

Networks

Scaling Relations

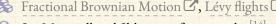
Death and Sports

Fractional Brownian Motion

More than randomness

Can generalize to Fractional Random Walks [15, 16, 14]

A Fractional Brownian Motion C, Lévy flights C



See Montroll and Shlesinger for example: [14] "On 1/f noise and other distributions with long tails." Proc. Natl. Acad. Sci., 1982.

 \triangle In 1-d, standard deviation σ scales as

 $\sigma \sim t^{\alpha}$

 $\alpha = 1/2$ — diffusive

 $\alpha > 1/2$ — superdiffusive

 $\alpha < 1/2$ — subdiffusive

Extensive memory of path now matters...

The PoCSverse Power-Law Mechanisms, Pt. 1 41 of 49

Random Walks The First Return

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

The PoCSverse Power-Law Mechanisms, Pt. 1 42 of 49

Random Walks

The First Return Problem

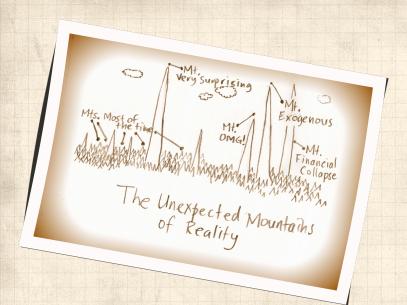
Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

- A First big studies of movement and interactions of people.
- & Brockmann et al. [1] "Where's George" study.
- Beyond Lévy: Superdiffusive in space but with long waiting times.
- $\ensuremath{\mathfrak{S}}$ Tracking movement via cell phones [9] and Twitter [7].



The PoCSverse Power-Law Mechanisms, Pt. 1 43 of 49

Random Walks
The First Return

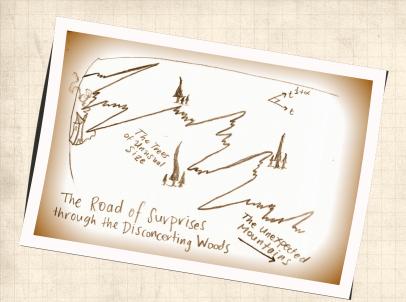
roblem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion



The PoCSverse Power-Law Mechanisms, Pt. 1 44 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References I

[1] D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human travel.

Nature, pages 462–465, 2006. pdf

[2] A. Clauset, M. Kogan, and S. Redner. Safe leads and lead changes in competitive team sports. Phys. Rev. E, 91:062815, 2015. pdf

- [3] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf
- [4] P. S. Dodds and D. H. Rothman.
 Scaling, universality, and geomorphology.
 Annu. Rev. Earth Planet. Sci., 28:571–610, 2000. pdf

The PoCSverse Power-Law Mechanisms, Pt. 1 45 of 49

Random Walks
The First Return
Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References II

[5] W. Feller.

An Introduction to Probability Theory and Its Applications, volume I.

John Wiley & Sons, New York, third edition, 1968.

[6] T. M. Fink and Y. Mao.

Designing tie knots by random walks.

Nature, 398:31–32, 1999. pdf ✓

[7] M. R. Frank, L. Mitchell, P. S. Dodds, and C. M. Danforth. Happiness and the patterns of life: A study of geolocated Tweets.
Nature Scientific Reports, 3:2625, 2013. pdf

[8] A. Gabel and S. Redner.
 Random walk picture of basketball scoring.
 Journal of Quantitative Analysis in Sports, 8:1–20, 2012.

The PoCSverse Power-Law Mechanisms, Pt. 1 46 of 49

Random Walks
The First Return

Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References III

[9] M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding individual human mobility patterns. Nature, 453:779–782, 2008. pdf

[10] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf

[11] D. P. Kiley, A. J. Reagan, L. Mitchell, C. M. Danforth, and P. S. Dodds.

The game story space of professional sports: Australian Rules Football.

Physical Review E, 93, 2016. pdf

The PoCSverse Power-Law Mechanisms, Pt. 1 47 of 49

Random Walks
The First Return

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References IV

[12] P. Lévy and M. Loeve.

Processus stochastiques et mouvement brownien.

Gauthier-Villars Paris, 1965.

[13] D. R. Montgomery and W. E. Dietrich.
Channel initiation and the problem of landscape scale.
Science, 255:826–30, 1992. pdf

[14] E. W. Montroll and M. F. Shlesinger.

On the wonderful world of random walks, volume XI of Studies in statistical mechanics, chapter 1, pages 1–121.

New-Holland, New York, 1984.

[15] E. W. Montroll and M. W. Shlesinger.
On 1/f noise and other distributions with long tails.
Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf

The PoCSverse Power-Law Mechanisms, Pt. 1 48 of 49

Random Walks

The First Return Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

References V

[16] E. W. Montroll and M. W. Shlesinger.
 Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails.
 J. Stat. Phys., 32:209–230, 1983.

[17] A. E. Scheidegger.

The algebra of stream-order numbers.

United States Geological Survey Professional Paper, 525-B:B187-B189, 1967. pdf

[18] J. S. Weitz and H. B. Fraser. Explaining mortality rate plateaus.

Proc. Natl. Acad. Sci., 98:15383–15386, 2001. pdf

The PoCSverse Power-Law Mechanisms, Pt. 1 49 of 49

Random Walks
The First Return

Problem

Random River Networks

Scaling Relations

Death and Sports

Fractional Brownian Motion

