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� Heavy-tailed distributions are characters.
� Some of these distributions have power-law tails.
� Measured exponents (𝛾’s and 𝛼’s) vary across systems (and

measurers).
� What’s their origin story?
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Mechanisms:

A powerful story in the rise of complexity:
� structure arises out of randomness.
� Exhibit A: Random walks.�

The essential random walk:
� One spatial dimension.
� Time and space are discrete
� Random walker (e.g., a zombie texter�) starts at origin

𝑥 = 0.
� Step at time 𝑡 is 𝜖𝑡:

𝜖𝑡 = { +1 with probability 1/2
-1 with probability 1/2
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A few random random walks:
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Random walks:

Displacement after 𝑡 steps:

𝑥𝑡 =
𝑡

∑
𝑖=1

𝜖𝑖

Expected displacement:

⟨𝑥𝑡⟩ = ⟨
𝑡

∑
𝑖=1

𝜖𝑖⟩ =
𝑡

∑
𝑖=1

⟨𝜖𝑖⟩ = 0

� At any time step, we ‘expect’ our zombie texter to be back at
their starting place.

� Obviously fails for odd number of steps...
� But as time goes on, the chance of our texting undead friend

lurching back to 𝑥=0 must diminish, right?
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Variances sum:�∗

Var(𝑥𝑡) = Var(
𝑡

∑
𝑖=1

𝜖𝑖)

=
𝑡

∑
𝑖=1

Var (𝜖𝑖) =
𝑡

∑
𝑖=1

1 = 𝑡

∗ Sum rule = a good reason for using the variance to measure spread; only
works for independent distributions.

So typical displacement from the origin scales as:

𝜎 = 𝑡1/2

� A non-trivial scaling law arises out of
additive aggregation or accumulation.
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Random walk basics:

Counting random walks:
� Each specific random walk of length 𝑡 appears with a chance

1/2𝑡.
� We’ll be more interested in howmany random walks end up

at the same place.
� Define𝑁(𝑖, 𝑗, 𝑡) as # distinct walks that start at 𝑥 = 𝑖 and

end at 𝑥 = 𝑗 after 𝑡 time steps.
� Random walk must displace by+(𝑗 − 𝑖) after 𝑡 steps.
� Insert assignment question�

𝑁(𝑖, 𝑗, 𝑡) = ( 𝑡
(𝑡 + 𝑗 − 𝑖)/2

)
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How does 𝑃 (𝑥𝑡) behave for large 𝑡?
� Take time 𝑡 = 2𝑛 to help ourselves.
� 𝑥2𝑛 ∈ {0, ±2, ±4, … , ±2𝑛}
� 𝑥2𝑛 is even so set 𝑥2𝑛 = 2𝑘.
� Using our expression𝑁(𝑖, 𝑗, 𝑡)with 𝑖 = 0, 𝑗 = 2𝑘, and 𝑡 = 2𝑛, we

have

Pr(𝑥2𝑛 ≡ 2𝑘) ∝ ( 2𝑛
𝑛 + 𝑘

)

� For large 𝑛, the binomial deliciously approaches the Normal
Distribution of Snoredom:

Pr(𝑥𝑡 ≡ 𝑥) ≃ 1√
2𝜋𝑡

𝑒− 𝑥2
2𝑡 .

Insert assignment question�
� The whole is different from the parts. #nutritious
� See also: Stable Distributions�
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Universality� is also not left-handed:

� This is Diffusion�: the most essential kind of spreading
(more later).

� View as Random Additive GrowthMechanism.
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So many things are connected:

Pascal’s Triangle�

� Could have been the Pyramid of
Pingala�1or the Triangle of
Khayyam, Jia Xian, Tartaglia, …

� Binomials tend towards the Normal.
� Counting encoded in algebraic forms (and much more).
� (ℎ + 𝑡)𝑛 = ∑𝑛

𝑘=0 (𝑛
𝑘)ℎ𝑘𝑡𝑛−𝑘 where (𝑛

𝑘) = 𝑛!
𝑘!(𝑛−𝑘)!

� (ℎ + 𝑡)3 = ℎℎℎ + ℎℎ𝑡 + ℎ𝑡ℎ + 𝑡ℎℎ + ℎ𝑡𝑡 + 𝑡ℎ𝑡 + 𝑡𝑡ℎ + 𝑡𝑡𝑡

1Stigler’s Law of Eponymy� showing excellent form again.
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Random walks are even weirder than you might think...
� 𝜉𝑟,𝑡 = the probability that by time step 𝑡, a random walk has

crossed the origin 𝑟 times.
� Think of a coin flip game with ten thousand tosses.
� If you are behind early on, what are the chances you will make

a comeback?
� The most likely number of lead changes is... 0.
� In fact: 𝜉0,𝑡 > 𝜉1,𝑡 > 𝜉2,𝑡 > ⋯
� Even crazier:

The expected time between tied scores =∞
See Feller, Intro to Probability Theory, Volume I [5]
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Applied knot theory:
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❤❡ s✐♠♣❧❡st ♦❢ ❝♦♥✈❡♥t✐♦♥❛❧ t✐❡ ❦♥♦ts✱
t❤❡ ❢♦✉r✲✐♥✲❤❛♥❞✱ ❤❛s ✐ts ♦r✐❣✐♥s ✐♥ ❧❛t❡✲

♥✐♥❡t❡❡♥t❤✲❝❡♥t✉r② ❊♥❣❧❛♥❞✳ ❚❤❡ ❉✉❦❡ ♦❢
❲✐♥❞s♦r✱ ❛s ❑✐♥❣ ❊❞✇❛r❞ ❱■■■ ❜❡❝❛♠❡ ❛❢t❡r
❛❜❞✐❝❛t✐♥❣ ✐♥ ✎✾✸✻✱ ✐s ❝r❡❞✐t❡❞ ✇✐t❤ ✐♥tr♦✲
❞✉❝✐♥❣ ✇❤❛t ✐s ♥♦✇ ❦♥♦✇♥ ❛s t❤❡ ❲✐♥❞s♦r
❦♥♦t✱ ❢r♦♠ ✇❤✐❝❤ ✐ts s♠❛❧❧❡r ❞❡r✐✈❛t✐✈❡✱ t❤❡
❤❛❧❢✲❲✐♥❞s♦r✱ ❡✈♦❧✈❡❞✳ ■♥ ✎✾✽✾✱ t❤❡ Pr❛tt
❦♥♦t✱ t❤❡ ❢✐rst ♥❡✇ ❦♥♦t t♦ ❛♣♣❡❛r ✐♥ ❢✐❢t②
②❡❛rs✱ ✇❛s r❡✈❡❛❧❡❞ ♦♥ t❤❡ ❢r♦♥t ♣❛❣❡ ♦❢ ✏✑✒
◆✒✓ ❨✔✕✖ ✏✗✘✒✙✳
❘❛t❤❡r t❤❛♥ ✇❛✐t ❛♥♦t❤❡r ❤❛❧❢✲❝❡♥t✉r②

❢♦r t❤❡ ♥❡①t s❛rt♦r✐❛❧ ❛❞✈❛♥❝❡✱ ✇❡ ❤❛✈❡
t❛❦❡♥ ❛ ♠♦r❡ ❢♦r♠❛❧ ❛♣♣r♦❛❝❤✳ ❲❡ ❤❛✈❡
❞❡✈❡❧♦♣❡❞ ❛ ♠❛t❤❡♠❛t✐❝❛❧ ♠♦❞❡❧ ♦❢ t✐❡
❦♥♦ts✱ ❛♥❞ ♣r♦✈✐❞❡ ❛ ♠❛♣ ❜❡t✇❡❡♥ t✐❡
❦♥♦ts ❛♥❞ ♣❡rs✐st❡♥t r❛♥❞♦♠ ✇❛❧❦s ♦♥ ❛
tr✐❛♥❣✉❧❛r ❧❛tt✐❝❡✳ ❲❡ ❝❧❛ss✐❢② ❦♥♦ts ❛❝❝♦r❞✲
✐♥❣ t♦ t❤❡✐r s✐③❡ ❛♥❞ s❤❛♣❡✱ ❛♥❞ q✉❛♥t✐❢②
t❤❡ ♥✉♠❜❡r ♦❢ ❦♥♦ts ✐♥ ❡❛❝❤ ❝❧❛ss✳ ❚❤❡
♦♣t✐♠❛❧ ❦♥♦t ✐♥ ❛ ❝❧❛ss ✐s s❡❧❡❝t❡❞ ❜② t❤❡
♣r♦♣♦s❡❞ ❛❡st❤❡t✐❝ ❝♦♥❞✐t✐♦♥s ♦❢ s②♠♠❡✲
tr② ❛♥❞ ❜❛❧❛♥❝❡✳ ❖❢ t❤❡ ✽✺ ❦♥♦ts t❤❛t ❝❛♥
❜❡ t✐❡❞ ✇✐t❤ ❛ ❝♦♥✈❡♥t✐♦♥❛❧ t✐❡✱ ✇❡ r❡❝♦✈❡r
t❤❡ ❢♦✉r ❦♥♦ts t❤❛t ❛r❡ ✐♥ ✇✐❞❡s♣r❡❛❞ ✉s❡
❛♥❞ ✐♥tr♦❞✉❝❡ s✐① ♥❡✇ ❛❡st❤❡t✐❝❛❧❧② ♣❧❡❛s✲
✐♥❣ ❦♥♦ts✳
❆ t✐❡ ❦♥♦t ✐s st❛rt❡❞ ❜② ❜r✐♥❣✐♥❣ t❤❡ ✇✐❞❡

✭❛❝t✐✈❡✮ ❡♥❞ t♦ t❤❡ ❧❡❢t ❛♥❞ ❡✐t❤❡r ♦✈❡r ♦r
✉♥❞❡r t❤❡ ♥❛rr♦✇ ✭♣❛ss✐✈❡✮ ❡♥❞✱ ❞✐✈✐❞✐♥❣
t❤❡ s♣❛❝❡ ✐♥t♦ r✐❣❤t ✭❘✮✱ ❝❡♥tr❡ ✭❈✮ ❛♥❞ ❧❡❢t
✭▲✮ r❡❣✐♦♥s ✭❋✐❣✳ ✎❛✮✳ ❚❤❡ ❦♥♦t ✐s ❝♦♥t✐♥✉❡❞
❜② s✉❜s❡q✉❡♥t ❤❛❧❢✲t✉r♥s✱ ♦r ♠♦✈❡s✱ ♦❢ t❤❡
❛❝t✐✈❡ ❡♥❞ ❢r♦♠ ♦♥❡ r❡❣✐♦♥ t♦ ❛♥♦t❤❡r ✭❋✐❣✳
✎❜✮ s✉❝❤ t❤❛t ✐ts ❞✐r❡❝t✐♦♥ ❛❧t❡r♥❛t❡s
❜❡t✇❡❡♥ ♦✉t ♦❢ t❤❡ s❤✐rt ✭✭✮ ❛♥❞ ✐♥t♦ t❤❡
s❤✐rt ✭❫✮✳ ❚♦ ❝♦♠♣❧❡t❡ ❛ ❦♥♦t✱ t❤❡ ❛❝t✐✈❡
❡♥❞ ♠✉st ❜❡ ✇r❛♣♣❡❞ ❢r♦♠ t❤❡ r✐❣❤t ✭♦r
❧❡❢t✮ ♦✈❡r t❤❡ ❢r♦♥t t♦ t❤❡ ❧❡❢t ✭♦r r✐❣❤t✮✱
✉♥❞❡r♥❡❛t❤ t♦ t❤❡ ❝❡♥tr❡ ❛♥❞ ❢✐♥❛❧❧②
t❤r♦✉❣❤ ✭❞❡♥♦t❡❞ ❚ ❜✉t ♥♦t ❝♦♥s✐❞❡r❡❞ ❛
♠♦✈❡✮ t❤❡ ❢r♦♥t ❧♦♦♣ ❥✉st ♠❛❞❡✳
❊❧❡♠❡♥ts ♦❢ t❤❡ ♠♦✈❡ s❡t ④❘�✱ ❘✁✱ ❈�✱

❈✁✱ ▲�✱ ▲✁⑥ ❞❡s✐❣♥❛t❡ t❤❡ ♠♦✈❡s ♥❡❝❡ss❛r②
t♦ ♣❧❛❝❡ t❤❡ ❛❝t✐✈❡ ❡♥❞ ✐♥t♦ t❤❡ ❝♦rr❡s♣♦♥❞✲
✐♥❣ r❡❣✐♦♥ ❛♥❞ ❞✐r❡❝t✐♦♥✳ ❲❡ ❝❛♥ t❤❡♥
❞❡❢✐♥❡ ❛ t✐❡ ❦♥♦t ❛s ❛ s❡q✉❡♥❝❡ ♦❢ ♠♦✈❡s ✐♥✐✲
t✐❛t❡❞ ❜② ▲✁ ♦r ▲� ❛♥❞ t❡r♠✐♥❛t✐♥❣ ✇✐t❤ t❤❡
s✉❜s❡q✉❡♥❝❡ ❘�▲✁❈�❚ ♦r ▲�❘✁❈�❚✳ ❚❤❡
s❡q✉❡♥❝❡ ✐s ❝♦♥str❛✐♥❡❞ s✉❝❤ t❤❛t ♥♦ t✇♦
❝♦♥s❡❝✉t✐✈❡ ♠♦✈❡s ✐♥❞✐❝❛t❡ t❤❡ s❛♠❡ r❡❣✐♦♥
♦r ❞✐r❡❝t✐♦♥✳
❲❡ r❡♣r❡s❡♥t ❦♥♦t s❡q✉❡♥❝❡s ❛s r❛♥❞♦♠

✇❛❧❦s ♦♥ ❛ tr✐❛♥❣✉❧❛r ❧❛tt✐❝❡ ✭❋✐❣✳ ✎❝✮✳ ❚❤❡
❛①❡s ✕✚ ✛ ❛♥❞ ✜ ❝♦rr❡s♣♦♥❞ t♦ t❤❡ t❤r❡❡ ♠♦✈❡
r❡❣✐♦♥s ❘✱ ❈ ❛♥❞ ▲✱ ❛♥❞ t❤❡ ✉♥✐t ✈❡❝t♦rs ✢❫✱ ✣❫
❛♥❞ ✤❫ r❡♣r❡s❡♥t t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♠♦✈❡s❀
✇❡ ♦♠✐t t❤❡ ❞✐r❡❝t✐♦♥❛❧ ♥♦t❛t✐♦♥ ✭✱❫ ❛♥❞
t❤❡ t❡r♠✐♥❛❧ ❛❝t✐♦♥ ❚✳ ❇❡❝❛✉s❡ ❛❧❧ ❦♥♦t
s❡q✉❡♥❝❡s ❡♥❞ ✇✐t❤ ❈� ❛♥❞ ❛❧t❡r♥❛t❡
❜❡t✇❡❡♥ ✭ ❛♥❞ ❫✱ ❛❧❧ ❦♥♦ts ♦❢ ♦❞❞ ♥✉♠✲
❜❡rs ♦❢ ♠♦✈❡s ❜❡❣✐♥ ✇✐t❤ ▲�✱ ✇❤❡r❡❛s t❤♦s❡
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The simplest of conventional tie knots,
the four-in-hand, has its origins in late-

nineteenth-century England. The Duke of
Windsor, as King Edward VIII became after
abdicating in 1936, is credited with intro-
ducing what is now known as the Windsor
knot, from which its smaller derivative, the
half-Windsor, evolved. In 1989, the Pratt
knot, the first new knot to appear in fifty
years, was revealed on the front page of The
New York Times.

Rather than wait another half-century
for the next sartorial advance, we have
taken a more formal approach. We have
developed a mathematical model of tie
knots, and provide a map between tie
knots and persistent random walks on a
triangular lattice. We classify knots accord-
ing to their size and shape, and quantify
the number of knots in each class. The
optimal knot in a class is selected by the
proposed aesthetic conditions of symme-
try and balance. Of the 85 knots that can
be tied with a conventional tie, we recover
the four knots that are in widespread use
and introduce six new aesthetically pleas-
ing knots.

A tie knot is started by bringing the wide
(active) end to the left and either over or
under the narrow (passive) end, dividing
the space into right (R), centre (C) and left
(L) regions (Fig. 1a). The knot is continued
by subsequent half-turns, or moves, of the
active end from one region to another (Fig.
1b) such that its direction alternates
between out of the shirt (!) and into the
shirt ("). To complete a knot, the active
end must be wrapped from the right (or
left) over the front to the left (or right),
underneath to the centre and finally
through (denoted T but not considered a
move) the front loop just made.

Elements of the move set {R!, R", C!,
C", L!, L"} designate the moves necessary
to place the active end into the correspond-
ing region and direction. We can then
define a tie knot as a sequence of moves ini-
tiated by L" or L! and terminating with the
subsequence R! L" C! T or L! R" C! T. The
sequence is constrained such that no two
consecutive moves indicate the same region
or direction.

We represent knot sequences as random
walks on a triangular lattice (Fig. 1c). The
axes r, c and l correspond to the three move
regions R, C and L, and the unit vectors r^, c^

and l
^
represent the corresponding moves;

we omit the directional notation !," and
the terminal action T. Because all knot
sequences end with C! and alternate
between ! and ", all knots of odd num-
bers of moves begin with L!, whereas those
of even numbers of moves begin with L".

Our simplified random-walk notation is
therefore unique.

The size of a knot, and the primary
parameter by which we classify it, is the
number of moves in the knot sequence,
denoted by the half-winding number h. The
initial and terminal sequences dictate that
the smallest knot is given by the sequence
L! R" C! T, with h!3. Practical considera-
tions (namely the finite length of the tie), as
well as aesthetic ones, suggest an upper
bound on knot size, so we limit our exact
results to h"9.

The number of knots as a function of
size, K(h), corresponds to the number of
walks of length h beginning with l

^
and end-

ing with r^ l
^ 

c^ or l
^ 
r^ c^. It may be written

K(h)!(1/3)(2h!2!(!1)h!2)

where K(1)!0, and the total number of
knots is !i!1

9 K(i)!85.

The shape of a knot depends on the
number of right, centre and left moves in
the tie sequence. Because symmetry dictates
that there be an equal number of right and
left moves (see below), the shape of a knot
is characterized by the number of centre
moves #. We use it to classify knots of equal
size h; knots with identical h and # belong
to the same class. A large centre fraction #/h
indicates a broad knot (such as the Wind-
sor) and a small centre fraction suggests a
narrow one (such as the four-in-hand), but
not all centre fractions allow aesthetic
knots. We therefore limit our attention to
1/4 " #/h " 1/2.

The number of knots in a class, K(h, #),
is equivalent to the number of walks of
length h that satisfy the boundary condi-
tions and contain # steps c^; it appears as

K(h, #)!2#$1(h$#$2)#$1
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FFiigguurree  11 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. 
a, The two ways of beginning a knot, L! and L". For knots beginning with L!, the tie must begin 
inside-out. b, The four-in-hand, denoted by the sequence L"  R!  L"  C! T. c, A knot may be represented 
by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the
walk ll^̂ rr^̂ ll^̂ cc^̂.
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Table 1 Aesthetic tie knots

h # #/h K(h, #) s b Name Sequence

3 1 0.33 1 0 0 L! R" C! T

4 1 0.25 1 $1 1 Four-in-hand L" R! L" C! T

5 2 0.40 2 $1 0 Pratt knot L! C" R! L" C! T

6 2 0.33 4 0 0 Half-Windsor L" R! C" L! R" C! T

7 2 0.29 6 $1 1 L! R" L! C" R! L" C! T

7 3 0.43 4 0 1 L! C" R! C" L! R" C! T

8 2 0.25 8 0 2 L" R! L" C! R" L! R" C! T

8 3 0.38 12 $1 0 Windsor L" C! R" L! C" R! L" C! T

9 3 0.33 24 0 0 L! R" C! L" R! C" L! R" C! T

9 4 0.44 8 $1 2 L! C" R! C" L! C" R! L" C! T

Knots are characterized by half-winding number h, centre number #, centre fraction #/h, knots per class K(h, #),
symmetry s, balance b, name and sequence.
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The simplest of conventional tie knots,
the four-in-hand, has its origins in late-

nineteenth-century England. The Duke of
Windsor, as King Edward VIII became after
abdicating in 1936, is credited with intro-
ducing what is now known as the Windsor
knot, from which its smaller derivative, the
half-Windsor, evolved. In 1989, the Pratt
knot, the first new knot to appear in fifty
years, was revealed on the front page of The
New York Times.

Rather than wait another half-century
for the next sartorial advance, we have
taken a more formal approach. We have
developed a mathematical model of tie
knots, and provide a map between tie
knots and persistent random walks on a
triangular lattice. We classify knots accord-
ing to their size and shape, and quantify
the number of knots in each class. The
optimal knot in a class is selected by the
proposed aesthetic conditions of symme-
try and balance. Of the 85 knots that can
be tied with a conventional tie, we recover
the four knots that are in widespread use
and introduce six new aesthetically pleas-
ing knots.

A tie knot is started by bringing the wide
(active) end to the left and either over or
under the narrow (passive) end, dividing
the space into right (R), centre (C) and left
(L) regions (Fig. 1a). The knot is continued
by subsequent half-turns, or moves, of the
active end from one region to another (Fig.
1b) such that its direction alternates
between out of the shirt (!) and into the
shirt ("). To complete a knot, the active
end must be wrapped from the right (or
left) over the front to the left (or right),
underneath to the centre and finally
through (denoted T but not considered a
move) the front loop just made.

Elements of the move set {R!, R", C!,
C", L!, L"} designate the moves necessary
to place the active end into the correspond-
ing region and direction. We can then
define a tie knot as a sequence of moves ini-
tiated by L" or L! and terminating with the
subsequence R! L" C! T or L! R" C! T. The
sequence is constrained such that no two
consecutive moves indicate the same region
or direction.

We represent knot sequences as random
walks on a triangular lattice (Fig. 1c). The
axes r, c and l correspond to the three move
regions R, C and L, and the unit vectors r^, c^

and l
^
represent the corresponding moves;

we omit the directional notation !," and
the terminal action T. Because all knot
sequences end with C! and alternate
between ! and ", all knots of odd num-
bers of moves begin with L!, whereas those
of even numbers of moves begin with L".

Our simplified random-walk notation is
therefore unique.

The size of a knot, and the primary
parameter by which we classify it, is the
number of moves in the knot sequence,
denoted by the half-winding number h. The
initial and terminal sequences dictate that
the smallest knot is given by the sequence
L! R" C! T, with h!3. Practical considera-
tions (namely the finite length of the tie), as
well as aesthetic ones, suggest an upper
bound on knot size, so we limit our exact
results to h"9.

The number of knots as a function of
size, K(h), corresponds to the number of
walks of length h beginning with l

^
and end-

ing with r^ l
^ 

c^ or l
^ 
r^ c^. It may be written

K(h)!(1/3)(2h!2!(!1)h!2)

where K(1)!0, and the total number of
knots is !i!1

9 K(i)!85.

The shape of a knot depends on the
number of right, centre and left moves in
the tie sequence. Because symmetry dictates
that there be an equal number of right and
left moves (see below), the shape of a knot
is characterized by the number of centre
moves #. We use it to classify knots of equal
size h; knots with identical h and # belong
to the same class. A large centre fraction #/h
indicates a broad knot (such as the Wind-
sor) and a small centre fraction suggests a
narrow one (such as the four-in-hand), but
not all centre fractions allow aesthetic
knots. We therefore limit our attention to
1/4 " #/h " 1/2.

The number of knots in a class, K(h, #),
is equivalent to the number of walks of
length h that satisfy the boundary condi-
tions and contain # steps c^; it appears as

K(h, #)!2#$1(h$#$2)#$1
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FFiigguurree  11 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. 
a, The two ways of beginning a knot, L! and L". For knots beginning with L!, the tie must begin 
inside-out. b, The four-in-hand, denoted by the sequence L"  R!  L"  C! T. c, A knot may be represented 
by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the
walk ll^̂ rr^̂ ll^̂ cc^̂.

Passive end Active end
L · L !

L
R

C

L R

C
a c

b

c

l r

Table 1 Aesthetic tie knots

h # #/h K(h, #) s b Name Sequence

3 1 0.33 1 0 0 L! R" C! T

4 1 0.25 1 $1 1 Four-in-hand L" R! L" C! T

5 2 0.40 2 $1 0 Pratt knot L! C" R! L" C! T

6 2 0.33 4 0 0 Half-Windsor L" R! C" L! R" C! T

7 2 0.29 6 $1 1 L! R" L! C" R! L" C! T

7 3 0.43 4 0 1 L! C" R! C" L! R" C! T

8 2 0.25 8 0 2 L" R! L" C! R" L! R" C! T

8 3 0.38 12 $1 0 Windsor L" C! R" L! C" R! L" C! T

9 3 0.33 24 0 0 L! R" C! L" R! C" L! R" C! T

9 4 0.44 8 $1 2 L! C" R! C" L! C" R! L" C! T

Knots are characterized by half-winding number h, centre number #, centre fraction #/h, knots per class K(h, #),
symmetry s, balance b, name and sequence.

� ℎ = number of moves

� 𝛾 = number of center
moves

� 𝐾(ℎ, 𝛾) =
2𝛾−1(ℎ−𝛾−2

𝛾−1 )

� 𝑠 = ∑ℎ
𝑖=1 𝑥𝑖 where 𝑥𝑖 = −1

for𝐿 and 𝑥𝑖 = +1 for𝑅.

� 𝑏 = 1
2 ∑ℎ−1

𝑖=2 |𝜔𝑖+𝜔𝑖−1|
where 𝜔 = ±1 represents
winding direction.
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Random walks #crazytownbananapants�

The problem of first return:
� What is the probability that a random walker in one

dimension returns to the origin for the first time after 𝑡 steps?
� Will our zombie texter always return to the origin?
� What about higher dimensions?

Reasons for caring:
1. We will find a power-law size distribution with an interesting

exponent.
2. Some physical structures may result from random walks.
3. We’ll start to see how different scalings relate to each other.
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For random walks in 1-𝑑:

0 5 10 15 20
−4

−2

0

2

4

t

x

� A return to origin can only happen when 𝑡 = 2𝑛.
� In example above, returns occur at 𝑡 = 8, 10, and 14.
� Call 𝑃fr(2𝑛) the probability of first return at 𝑡 = 2𝑛.
� Probability calculation≡Counting problem

(combinatorics/statistical mechanics).
� Idea: Transform first return problem into an easier return

problem.
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� Can assume zombie texter first lurches to 𝑥 = 1.

� Observe walk first returning at 𝑡 = 16 stays at or above 𝑥 = 1 for
1 ≤ 𝑡 ≤ 15 (dashed red line).

� Nowwant walks that can return many times to 𝑥 = 1.

� 𝑃fr(2𝑛) =
2 ⋅ 1

2 𝑃𝑟(𝑥𝑡 ≥ 1, 1 ≤ 𝑡 ≤ 2𝑛 − 1, and 𝑥1 = 𝑥2𝑛−1 = 1)

� The 1
2 accounts for 𝑥2𝑛 = 2 instead of 0.

� The 2 accounts for texters that first lurch to 𝑥 = −1.

The PoCSverse
Power-Law
Mechanisms, Pt. 1
24 of 46
RandomWalks

The First Return
Problem

RandomRiver
Networks

Scaling Relations

Death and Sports

Fractional Brownian
Motion

References

Counting first returns:

Approach:
� Move to counting numbers of walks.
� Return to probability at end.
� Again,𝑁(𝑖, 𝑗, 𝑡) is the # of possible walks between 𝑥 = 𝑖 and

𝑥 = 𝑗 taking 𝑡 steps.
� Consider all paths starting at 𝑥 = 1 and ending at 𝑥 = 1 after

𝑡 = 2𝑛 − 2 steps.
� Idea: If we can compute the number of walks that hit 𝑥 = 0

at least once, then we can subtract this from the total number
to find the ones that maintain 𝑥 ≥ 1.

� Call walks that drop below 𝑥 = 1 excluded walks.
� We’ll use a method of images to identify these excluded walks.
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Examples of excluded walks:
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Key observation for excluded walks:
� For any path starting at 𝑥=1 that hits 0, there is a unique

matching path starting at 𝑥=−1.
� Matching path first mirrors and then tracks after first reaching

𝑥=0.
� # of 𝑡-step paths starting and ending at 𝑥=1 and hitting 𝑥=0 at

least once
= # of 𝑡-step paths starting at 𝑥=−1 and ending at 𝑥=+1
=𝑁(−1, +1, 𝑡)
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� Call the number of paths that return after 𝑡 = 2𝑛 time steps
after first moving to the positive side𝑁+

fr (2𝑛).
� For paths that first move to the negative side: 𝑁−

fr (2𝑛).
� So𝑁+

fr (2𝑛) = 𝑁(+1, +1, 2𝑛 − 2) − 𝑁(−1, +1, 2𝑛 − 2)
� Negative side:

𝑁−
fr (2𝑛) = 𝑁(−1, −1, 2𝑛 − 2) − 𝑁(+1, −1, 2𝑛 − 2)

� Symmetry: 𝑁+
fr (2𝑛) = 𝑁−

fr (2𝑛)
� Both𝑁fr(2𝑛) and the one sided𝑁+

fr (2𝑛) are of mathematical
and physical interest.

� Overall:

𝑁fr(2𝑛) = 𝑁+
fr (2𝑛) + 𝑁−

fr (2𝑛) = 2𝑁+
fr (2𝑛)

= 2𝑁(+1, +1, 2𝑛 − 2) − 2𝑁(−1, +1, 2𝑛 − 2).

One of many related things: Catalan numbers�

The PoCSverse
Power-Law
Mechanisms, Pt. 1
27 of 46
RandomWalks

The First Return
Problem

RandomRiver
Networks

Scaling Relations

Death and Sports

Fractional Brownian
Motion

References

Probability of first return:

Insert assignment question� :

� Find

𝑁fr(2𝑛) ∼ 22𝑛−3/2
√

2𝜋𝑛3/2
.

� Normalized number of paths gives probability.
� Total number of possible paths = 22𝑛.
�

𝑃fr(2𝑛) = 1
22𝑛 𝑁fr(2𝑛)

≃ 1
22𝑛

22𝑛−3/2
√

2𝜋𝑛3/2

= 1√
2𝜋

(2𝑛)−3/2 ∝ 𝑡−3/2.
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� We have 𝑃(𝑡) ∝ 𝑡−3/2, 𝛾 = 3/2.

� Same scaling holds for continuous space/time walks.

� 𝑃(𝑡) is normalizable.

� Recurrence: Random walker always returns to origin

� But mean, variance, and all higher moments are infinite.
#totalmadness

� Even though walker must return, expect a long wait...

� One moral: Repeated gambling against an infinitely wealthy
opponent must lead to ruin.

Higher dimensions�:
� Walker in 𝑑 = 2 dimensions must also return

� Walker may not return in 𝑑 ≥ 3 dimensions

� Associated human���genius: George Pólya�
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Random walks

On finite spaces:
� In any finite homogeneous space, a random walker will visit

every site with equal probability
� Call this probability the Invariant Density of a dynamical

system
� Non-trivial Invariant Densities arise in chaotic systems.

On networks:
� On networks, a random walker visits each node with

frequency∝ node degree #groovy
� Equal probability still present:

walkers traverse edges with equal frequency.
#totallygroovy
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Scheidegger Networks [17, 4]

� Random directed network on triangular lattice.
� Toy model of real networks.
� ‘Flow’ is southeast or southwest with equal probability.
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Scheidegger networks

� Creates basins with random walk boundaries.
� Observe that subtracting one randomwalk from another gives

random walk with increments:

𝜖𝑡 =
⎧{
⎨{⎩

+1 with probability 1/4
0 with probability 1/2

−1 with probability 1/4

� Random walk with probabilistic pauses.
� Basin termination = first return random walk problem.
� Basin length ℓ distribution: 𝑃(ℓ) ∝ ℓ−3/2

� For real river networks, generalize to 𝑃(ℓ) ∝ ℓ−𝛾.

The PoCSverse
Power-Law
Mechanisms, Pt. 1
32 of 46
RandomWalks

The First Return
Problem

RandomRiver
Networks

Scaling Relations

Death and Sports

Fractional Brownian
Motion

References

Connections between exponents:

� For a basin of length ℓ, width∝ ℓ1/2

� Basin area 𝑎 ∝ ℓ ⋅ ℓ1/2 = ℓ3/2

� Invert: ℓ ∝ 𝑎2/3

� dℓ ∝ d(𝑎2/3) = 2/3𝑎−1/3d𝑎
� Pr(basin area = 𝑎)d𝑎

= Pr(basin length = ℓ)dℓ
∝ ℓ−3/2dℓ
∝ (𝑎2/3)−3/2𝑎−1/3d𝑎
= 𝑎−4/3d𝑎
= 𝑎−𝜏d𝑎
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Connections between exponents:

� Both basin area and length obey power law distributions
� Observed for real river networks
� Reportedly: 1.3 < 𝜏 < 1.5 and 1.5 < 𝛾 < 2

Generalize relationship between area and length:
� Hack’s law [10]:

ℓ ∝ 𝑎ℎ.

� For real, large networks [13] ℎ ≃ 0.5 (isometric scaling)
� Smaller basins possibly ℎ > 1/2 (allometric scaling).
� Models exist with interesting values of ℎ.
� Plan: Redo calc with 𝛾, 𝜏, and ℎ.
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Connections between exponents:

� Given

ℓ ∝ 𝑎ℎ, 𝑃 (𝑎) ∝ 𝑎−𝜏, and 𝑃(ℓ) ∝ ℓ−𝛾

� dℓ ∝ d(𝑎ℎ) = ℎ𝑎ℎ−1d𝑎
� Find 𝜏 in terms of 𝛾 and ℎ.
� Pr(basin area = 𝑎)d𝑎

= Pr(basin length = ℓ)dℓ
∝ ℓ−𝛾dℓ
∝ (𝑎ℎ)−𝛾𝑎ℎ−1d𝑎
= 𝑎−(1+ℎ (𝛾−1))d𝑎

�

𝜏 = 1 + ℎ(𝛾 − 1)

� Excellent example of the Scaling Relations found between
exponents describing power laws for many systems.
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Connections between exponents:

With more detailed description of network structure,
𝜏 = 1 + ℎ(𝛾 − 1) simplifies to: [3]

𝜏 = 2 − ℎ

and
𝛾 = 1/ℎ

� Only one exponent is independent (take ℎ).
� Simplifies system description.
� Expect Scaling Relations where power laws are found.
� Need only characterize Universality� class with

independent exponents.
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Death …

Failure:
� A very simple model of failure/death
� 𝑥𝑡 = entity’s ‘health’ at time 𝑡
� Start with 𝑥0 > 0.
� Entity fails when 𝑥 hits 0.

Explaining mortality rate plateaus
Joshua S. Weitz*† and Hunter B. Fraser‡§

Departments of *Physics and ‡Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Kenneth W. Wachter, University of California, Berkeley, CA, and approved October 24, 2001 (received for review May 8, 2001)

We propose a stochastic model of aging to explain deviations from
exponential growth in mortality rates commonly observed in
empirical studies. Mortality rate plateaus are explained as a generic
consequence of considering death in terms of first passage times
for processes undergoing a random walk with drift. Simulations of
populations with age-dependent distributions of viabilities agree
with a wide array of experimental results. The influence of cohort
size is well accounted for by the stochastic nature of the model.

Fundamental studies of the aging process have of late attracted
the interest of researchers in a variety of disciplines, linking

ideas and theories from biochemistry to mathematics (1–3).
Much of this recent activity is due to the possibility that one of
the supposedly fundamental tenets of aging, namely the expo-
nential growth of mortality rates proposed by Gompertz (4), may
fail to describe the behavior of observed populations adequately.
More specifically, studies using populations or ‘‘cohorts’’ of
Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila,
and humans demonstrate that mortality rates tend to level off
and even decrease at later stages of life (5–9). Attempts have
been made to explain these plateaus via parabolic hazard
functions (10), age-dependent demographics (11, 12), and phe-
nomenological bifurcation models (8). In this paper we propose
a simple model that incorporates heterogeneous dynamics to
explain the generic plateau in mortality rates commonly ob-
served in large cohorts of organisms.

Consider a population of N organisms with a distribution of
viabilities, vi ! 0, where vi ! 0 signifies death. The dynamics of
an individual viability will be modeled as follows:

vi"t " 1# # vi"t# $ % " &'i"t#, [1]

where % $ 0 is a constant drift, & $ 0 is the standard deviation
of the fluctuations, and 'i(t) is an uncorrelated Gaussian random
variable with zero mean and unit standard deviation. The linear
decline of viability is justified by the observation of a linear
decline of physiological functions noted by Strehler and Mildvan
(13) as well as similar results in more recent surveys (14). The
stochasticity in the system may be related to the competition for
resources, phenotypic differences, local environmental changes,
or even stochastic gene expression (15) but does not necessarily
depend on heterogeneity in the initial genotypic distribution.
The inclusion of stochasticity at the individual level implies that
Eq. 1 may be considered a changing frailty model as opposed to
a fixed frailty model. A fixed frailty model preserves any initial
heterogeneity in v throughout each individual lifespan (16).

Biologically, this model states that each organism drifts toward
death but with low probability may occasionally increase its
long-term chances for survival. The probability of dying at time
t is equivalent to the probability of first passage time P(t!v0) of
a random walk that begins at v ! v0 and reaches the origin, v !
0, at time t. The likelihood of death is controlled by the relative
strength of drift and fluctuations. In this paper we explain the
basic mechanism associated with first passage time problems and
then proceed to show how such a model captures the essential
features of late life mortality plateaus.

Theory of First Passage Time Problems
Eq. 1 may be better understood by considering the limits of
vanishing noise and then vanishing drift. When & 3 0, the

organisms move in lock step toward an inevitable death. The
hazard rate, ((t), may be solved at t $ 0 for any initial
distribution of viabilities, n0(v),

("t# #
D"t#

N0 $ "
t% # 0

t $ 1 D"t%#
, [2]

where N0 is the total number of initial organisms, and D(t) is the
number of organisms that die at time t,

D"t# # #
%"t $ 1#

%t

dvn0"v#. [3]

For a uniform distribution of initial viabilities, 0 & vi(0) & 1, the
hazard rate reduces to

("t# #
%

1 $ %t ,

$ % exp"%t#, %t&&1. [4]

In the limit of slow drift the hazard rate grows exponentially for
small t and continues to grow until the system is left desolate at
t ! 1%%. At intermediate times the hazard rate is not increasing
exponentially as one might expect from a Gompertz model.
Regardless of its precise form, the monotonic increase of
mortality rates as evidenced in this simple example leads to the
natural question of what causes mortality rates to plateau in
populations of fruit f lies, yeast, and other organisms.

The first step in answering this question is to consider the
other limit of Eq. 1, namely %3 0, when fluctuations dominate
the dynamics. In this regime an individual viability vi(t) follows
a random walk that ends when v ) 0. Qualitatively the removal
of individuals with v ) 0 is tantamount to increasing the average
viability of the remaining cohort. With time the average viability
should increase, and therefore the hazard rate should decrease.
It is important to note that as the population dies off, it will
become more susceptible to fluctuations and may exhibit an
intermittent rise in hazard rate near complete elimination. This
caveat notwithstanding, we begin to see why the combination of
these two effects, drift and fluctuation, might give rise to just the
sort of behavior observed in large-scale mortality studies.

In order to simplify the analytical calculation of hazard rates
we rewrite Eq. 1 in the case of continuous time,

dvi # '%dt " &dWi"t#, [5]

where Wi(t) is a stochastic Wiener process that satisfies dWi
(t%)dWj(t) ! *ij*(t% ' t)dt. The difference between Eqs. 1 and
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… and the NBA:

Basketball and other sports [2]:
� Three arcsine laws� (Lévy [12]) for continuous-time random

walk lasting time 𝑇:

1
𝜋

1
√𝑡(𝑇 − 𝑡)

.

The arcsine distribution� applies for:
(1) fraction of time positive,
(2) the last time the walk changes sign,
and (3) the time the maximum is achieved.

� Well approximated by basketball score lines [8, 2].
� Australian Rules Football has some differences [11].
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More than randomness

� Can generalize to Fractional RandomWalks [15, 16, 14]

� Fractional BrownianMotion�, Lévy flights�
� See Montroll and Shlesinger for example: [14]

“On 1/𝑓 noise and other distributions with long tails.”
Proc. Natl. Acad. Sci., 1982.

� In 1-d, standard deviation 𝜎 scales as

𝜎 ∼ 𝑡𝛼

𝛼 = 1/2—diffusive
𝛼 > 1/2— superdiffusive
𝛼 < 1/2— subdiffusive

� Extensive memory of path nowmatters...
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time. Figure 1b shows secondary reports of bank notes with initial
entry at Omaha that have dispersed for times T . 100 days (with an
average time kTl ¼ 289 days). Only 23.6% of the bank notes travelled
farther than 800 km, whereas 57.3% travelled an intermediate dis-
tance 50 , r , 800 km, and a relatively large fraction of 19.1%
remained within a radius of 50 km, even after an average time of
nearly one year. From the computed value Teq < 68 days, a much
higher fraction of bills is expected to reach the metropolitan areas of
the West coast and the New England states after this time. This is
sufficient evidence that the simple Lévy flight picture for dispersal is
incomplete. What causes this attenuation of dispersal?
Two alternative explanations might account for this effect. The

slowing down might be caused by strong spatial inhomogeneities of
the system. People might be less likely to leave large cities than for
example, suburban areas. Alternatively, long periods of rest might be
an intrinsic temporal property of dispersal. In asmuch as an algebraic
tail in spatial displacements yields superdiffusive behaviour, a tail in
the probability density f(t) for times t between successive spatial
displacements of an ordinary randomwalk can lead to subdiffusion15

(see Supplementary Information). Here, the ambivalence between
scale-free spatial displacements and scale-free periods of rest can be
responsible for the observed attenuation of superdiffusion.
In order to address this issue we investigated the relative pro-

portion Pi
0ðtÞ of bank notes which are reported in a small (20 km)

radius of the initial entry location i as a function of time (Fig. 1d).
The quantity Pi

0ðtÞ estimates the probability of a bank note being
reported at the initial location at time t. We computed Pi

0ðtÞ for
metropolitan areas, cities of intermediate size and small towns: for all
classes we found the asymptotic behaviour P0(t) , At2h, with the
same exponent h ¼ 0.6 ^ 0.03, which indicates that waiting time
and dispersal characteristics are universal. Notice that for a pure
Lévy flight with index b in two dimensions, P0(t) scales with time
as t22/b (dashed red line)15. For b < 0.6 (as suggested by Fig. 1c) this
implies h < 3.33. This is a fivefold steeper decrease than observed,
which clearly shows that dispersal cannot be described by a pure Lévy
flight. The measured decay is even slower than the decay expected
from ordinary two-dimensional diffusion (h ¼ 1, dashed black line).
Therefore, we conclude that the slow decay in P0(t) reflects the effect

Figure 1 | Dispersal of bank notes and humans on geographical scales.
a, Relative logarithmic densities of population (cP ¼ logrP/krPl), report
(cR ¼ logrR/krRl) and initial entry (c IE ¼ logr IE/kr IEl) as functions of
geographical coordinates. Colour-code shows densities relative to the
nationwide averages (3,109 counties) of krPl ¼ 95.15, krRl ¼ 0.34 and
kr IEl ¼ 0.15 individuals, reports and initial entries per km2, respectively.
b, Trajectories of bank notes originating from four different places. City
names indicate initial location, symbols secondary report locations. Lines
represent short-time trajectories with travelling time T , 14 days. Lines are
omitted for the long-time trajectories (initial entry in Omaha) with
T . 100 days. The inset depicts a close-up view of the New York area. Pie
charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry
location (dark), at short (0 , r , 50 km), intermediate (50 , r , 800 km)
and long (r . 800 km) distances are ordered by increasing brightness of hue.
The total number of initial entries are N ¼ 2,055 (Omaha), N ¼ 524
(Seattle), N ¼ 231 (New York), N ¼ 381 (Jacksonville). c, The short-time

dispersal kernel. The measured probability density function P(r) of
traversing a distance r in less than T ¼ 4 days is depicted in blue symbols.
It is computed from an ensemble of 20,540 short-time displacements. The
dashed black line indicates a power law P(r),r2(1 þ b) with an exponent of
b ¼ 0.59. The inset shows P(r) for three classes of initial entry locations
(black triangles for metropolitan areas, diamonds for cities of intermediate
size, circles for small towns). Their decay is consistent with the measured
exponent b ¼ 0.59 (dashed line). d, The relative proportion P0(t) of
secondary reports within a short radius (r0 ¼ 20 km) of the initial entry
location as a function of time. Blue squares show P0(t) averaged over 25,375
initial entry locations. Black triangles, diamonds, and circles show P0(t) for
the same classes as c. All curves decrease asymptotically as t2h with an
exponent h ¼ 0.60 ^ 0.03 indicated by the blue dashed line. Ordinary
diffusion in two dimensions predicts an exponent h ¼ 1.0 (black dashed
line). Lévy flight dispersal with an exponent b ¼ 0.6 as suggested by b
predicts an even steeper decrease, h ¼ 3.33 (red dashed line).
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� First big studies of movement and interactions of people.
� Brockmann et al. [1] “Where’s George” study.
� Beyond Lévy: Superdiffusive in space but with long waiting

times.
� Tracking movement via cell phones [9] and Twitter [7].
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