

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number University of Vermont, Fall 2024 "He's going to be all [right"](https://www.youtube.com/watch?v=bbQh_S2g6CI) � **Assignment 07**

[Buster Bluth](https://compstorylab.org/archetypometrics/cards/Arrested-Development-Buster-Bluth-2000-464-341.pdf) \mathbb{Z} , Arrested Development, Hand to God, S2E12. Episode links: [Wikipedia](https://en.wikipedia.org/wiki/Hand_to_God) \mathbb{Z} , [IMDB](https://www.imdb.com/title/tt0515220/) \mathbb{Z} , [Fandom](https://arresteddevelopment.fandom.com/wiki/Hand_to_God) \mathbb{Z} , TV [Tropes](https://tvtropes.org/pmwiki/pmwiki.php/Recap/ArrestedDevelopmentS2E12HandToGod) \mathbb{Z} .

Due: Monday, October 14, by 11:59 pm <https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/assignments/07/> Some useful reminders: **Deliverator:** [Prof. Peter Sheridan Dodds](https://pdodds.w3.uvm.edu/) (contact through Teams) **Office:** The Ether and/or Innovation, fourth floor **Office hours:** See Teams calendar **Course website:** <https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse> **Overleaf:** LATEX templates and settings for all assignments are available at https://www.overleaf.com/read/tsxfwwmwdgxj.

Some guidelines:

- 1. Each student should submit their own assignment.
- 2. All parts are worth 3 points unless marked otherwise.
- 3. Please show all your work/workings/workingses clearly and list the names of others with whom you conspired collaborated.
- 4. We recommend that you write up your assignments in LATEX (using the Overleaf template). However, if you are new to \mathbb{A} T_FX or it is all proving too much, you may submit handwritten versions. Whatever you do, please only submit single PDFs.
- 5. For coding, we recommend you improve your skills with Python, R, and/or Julia. **Please do not use any kind of AI thing.** The (evil) Deliverator uses (evil) Matlab.
- 6. There is no need to include your code but you can if you are feeling especially proud.

Assignment submission:

Via Brightspace (which is not to be confused with the death vortex of the same name).

Again: One PDF document per assignment only.

Please submit your project's current draft in pdf format via Brightspace four days after the due date for this assignment (normally a Friday). For teams, please list all team member names clearly at the start.

1. $(3 + 3 = 6 \text{ points})$

Zipfarama via Optimization:

Complete the Mandelbrotian derivation of Zipf's law by minimizing the function

$$
\Psi(p_1, p_2, \ldots, p_n) = F(p_1, p_2, \ldots, p_n) + \lambda G(p_1, p_2, \ldots, p_n)
$$

where the 'cost over information' function is

$$
F(p_1, p_2, \dots, p_n) = \frac{C}{H} = \frac{\sum_{i=1}^n p_i \ln(i+a)}{-g \sum_{i=1}^n p_i \ln p_i}
$$

and the constraint function is

$$
G(p_1, p_2, \dots, p_n) = \sum_{i=1}^n p_i - 1 \quad (= 0)
$$

to find

$$
p_j = e^{-1 - \lambda H^2 / gC} (j + a)^{-H / gC}.
$$

Then use the constraint equation, $\sum_{j=1}^n p_j = 1$ to show that

$$
p_j = (j + a)^{-\alpha}.
$$

where $\alpha = H/gC$.

3 points: When finding λ , find an expression connecting λ , g, C, and H.

The Perishing Monks who have returned say the way is sneaky. Before collapsing, one monk mumbled something about substituting the form you find for $\ln p_i$ into H 's definition (but do not replace p_i).

Note: We have now allowed the cost factor to be $(j + a)$ rather than $(j + 1)$.

2. (3 points) Carrying on from the previous problem:

For $n \to \infty$, use some computation tool (e.g., Matlab, an abacus, but not a clever friend who's really into computers) to determine that $\alpha \simeq 1.73$ for $a = 1$. (Recall: we expect $\alpha < 1$ for $\gamma > 2$)

3. (3 points) For finite n, find an approximate estimate of a in terms of n that yields $\alpha = 1$.

(Hint: use an integral approximation for the relevant sum.)

What happens to a as $n \to \infty$?

4. $(3 + 3 = 6 \text{ points})$

Repeat the preceding assignment's question on the largest sample for a power-law size distribution, now with $\gamma = 3/2$.

As $1 < \gamma < 2$, we should see a very different behavior.

Here's the question reprinted with γ switched to 3/2.

The key change in the question is in the form of $F(z)$ (last paragraph).

For $\gamma = 3/2$, generate $n = 1000$ sets each of $N = 10$, 10^2 , 10^3 , 10^4 , 10^5 , and 10^6 samples, using $P_k = ck^{-3/2}$ with $k = 1, 2, 3, \ldots$

How do we computationally sample from a discrete probability distribution?

Hint: You can use a continuum approximation to speed things up. In fact, taking the exact continuum version from the first two assignments will work.

(a) For each value of sample size N, sequentially create n sets of N samples. For each set, determine and record the maximum value of the set's N samples. (You can discard each set once you have found the maximum sample.) You should have $k_{\text{max},i}$ for $i = 1, 2, ..., n$ where i is the set number. For each N, plot the n values of $k_{\text{max},i}$ as a function of i.

If you think of n as time t , you will be plotting a kind of time series.

These plots should give a sense of the unevenness of the maximum value of k , a feature of power-law size distributions.

(b) Now find the average maximum value $\langle k_{\rm max} \rangle$ for each N.

The steps again here are:

- 1. Sample N times from P_k ;
- 2. Determine the maximum of the sample, k_{max} ;
- 3. Repeat steps 1 and 2 a total of n times and take the average of the n values of k_{max} you have obtained.

Plot $\langle k_{\rm max} \rangle$ as a function of N on double logarithmic axes, and calculate the scaling using least squares. Report error estimates.

Does your scaling match up with your theoretical estimate for $\gamma = 3/2$?

How to sample from your power law distribution (and similar kinds of beasts):

We now turn our problem of randomly selecting from this distribution into randomly selecting from the uniform distribution.

Because the tail of power-law size distributions can be so long, trying to sample from a discrete distribution can be either painfully slow or even computationally impossible. Brute force often works but not here.

We use a continuous approximation for P_k to make sampling both possible and fast.

We first approximate P_k with $P(z)=(\gamma-1)z^{-\gamma}$ for $z\geq 1$ (we have used the normalization coefficient found in assignment 1 for $a = 1$ and $b = \infty$). Writing $F(z)$ as the cdf for $P(z)$, we have $F(z) = 1 - z^{-(\gamma - 1)} = 1 - z^{-1/2}$ when $\gamma = 3/2$. Inverting, we obtain $z = [1 - F(z)]^{-1/(\gamma - 1)} = [1 - F(z)]^{-2}$ when $\gamma = 3/2$.

We now replace $F(z)$ with our random number x and round the value of z to finally get an estimate of k .

In sum, given x is distributed uniformly on $[0, 1]$, then

$$
k = \left[(1 - x)^{-2} \right]
$$

is approximately distributed according to a power-law size distribution $P_k = ck^{-3/2}$ where $\lceil \cdot \rceil$ indicates rounding to the nearest integer.

5. $(3 + 3 + 3 + 3 + 3 = 15 \text{ points})$

We take a look at the 80/20 rule, 1 per centers, and similar concepts.

Take x to be the wealth held by an individual in a population of n people, and the number of individuals with wealth between x and $x + dx$ to be approximately $N(x)dx$.

Given a power-law size frequency distribution $N(x) = cx^{-\gamma}$ where $x_{\min} \ll x \ll \infty$, determine the value of γ for which the so-called 80/20 rule holds.

In other words, find γ for which the bottom 4/5 of the population holds 1/5 of the overall wealth, and the top $1/5$ holds the remaining $4/5$.

Note that inherent in our construction of the wealth frequency distribution is that the population is ordered by increasing wealth.

Assume the mean is finite, i.e., $\gamma > 2$.

- (a) Determine the total wealth W in the system given $\int_{x_{\min}}^{\infty} dx N(x) = n$.
- (b) Imagine that the bottom $100 \theta_{pop}$ percent of the population holds $100 \theta_{weakth}$ percent of the wealth.

Show γ depends on $\theta_{\rm pop}$ and $\theta_{\rm wealth}$ as

$$
\gamma = 1 + \frac{\ln \frac{1}{(1 - \theta_{\text{pop}})}}{\ln \frac{1}{(1 - \theta_{\text{pop}})} - \ln \frac{1}{(1 - \theta_{\text{wealth}})}}.
$$
(1)

- (c) Given the above, is every pairing of θ_{pop} and θ_{wealth} possible?
- (d) Find γ for the 80/20 requirement ($\theta_{\rm pop} = 4/5$ and $\theta_{\rm wealth} = 1/5$).
- (e) For general γ , determine the fraction of wealth $\theta_{\rm wealth}$ that the bottom fraction θ_{pop} of the population possesses as a function of θ_{pop} . Call this function f : $\theta_{\text{wealth}} = f(\theta_{\text{pop}})$.

For the "80/20" γ you found in (d), plot the curve $f(\theta_{\text{pop}})$ and indicate the 80/20 rule.