Optimal Supply Networks III: Redistribution

Last updated: 2021/10/06, 20:25:47 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms

A reasonable derivation

Public versus Private

These slides are brought to you by:

PoCS @pocsvox

Optimal Supply Networks III

Distribute

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

9 a @ 3 of 48

Outline

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

PoCS @pocsvox

Optimal Supply Networks III

Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution Public versus Private

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um *et al.* (2009) [6], and work cited by them.

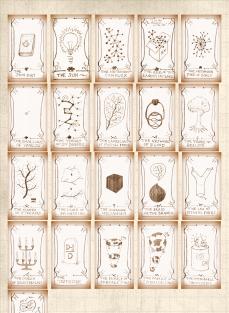
PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

Cartograms

A reasonable derivation Global redistribution Public versus Private



Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private

References

20 6 of 48

Pocs @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation

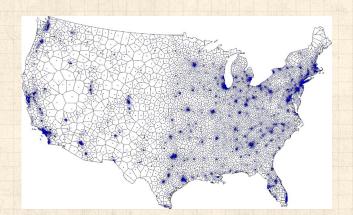
Public versus Private References

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- Given resources to build and maintain N facilities.
- \bigcirc O: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

"Optimal design of spatial distribution networks" (2"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



Approximately optimal location of 5000 facilities.

Based on 2000 Census data.

PoCS @pocsvox

Optimal Supply Networks III

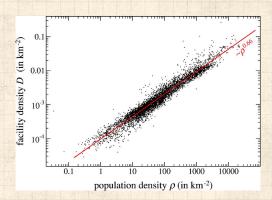
Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

References

20 8 of 48



Optimal Supply Networks III

Distributed Sources Size-density law

Public versus Private

References

 $\begin{cases} \ragged \& \end{cases}$ Optimal facility density ho_{fac} vs. population density ρ_{pop} .

 \Leftrightarrow Fit is $\rho_{\sf fac} \propto \rho_{\sf pop}^{0.66}$ with $r^2 = 0.94$.

& Looking good for a 2/3 power ...

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

- We first examine Stephan's treatment (1977) [4, 5]
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer Simpson principle.

PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law

artograms

A reasonable derivation
Global redistribution

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity τ .

All If burden of mainenance is shared then average cost per person is τ/P where P = population.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

 $\red {\Bbb S}$ Now Minimize with respect to $A \dots$

Optimal Supply Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

Differentiating ...

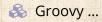
$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2\bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto
ho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$



Pocs @pocsvox

Optimal Supply Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Pocs @pocsvox

Optimal Supply Networks III

Sources

Size-density law

A reasonable derivation Global redistribution

References

An issue:

 \mathbb{A} Maintenance (τ) is assumed to be independent of population and area (P and A)

- Stephan's online book "The Division of Territory in Society" is here ...
- (It used to be here .)
- The Readme is well worth reading (1995).

Standard world map:

PoCS @pocsvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private

Cartogram of countries 'rescaled' by population:

PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- $\ref{Diffusion}$ Diffusion is constrained by boundary condition of surrounding area having density $\bar{\rho}_{pop}$.

PoCS @pocsvox

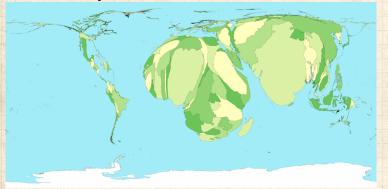
Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Child mortality:



PoCS @pocsvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private

Energy consumption:

PoCS @pocsvox

Optimal Supply Networks III

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Gross domestic product:



PoCS @pocsvox

Optimal Supply Networks III

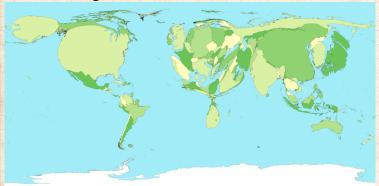
Distributed

Size-density law

Cartograms
A reasonable derivation

Global redistribution Public versus Private

Greenhouse gas emissions:



PoCS @pocsvox

Optimal Supply Networks III

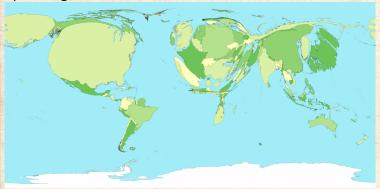
Distributed

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Spending on healthcare:



PoCS @pocsvox

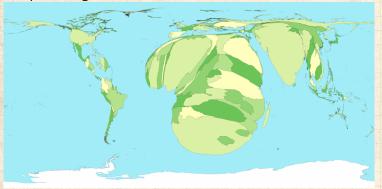
Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private

People living with HIV:



PoCS @pocsvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution Public versus Private

The preceding sampling of Gastner & Newman's cartograms lives here .

A larger collection can be found at worldmapper.org .

WORLDMAPPER The world as you've never seen it before

Pocs @pocsvox

Optimal Supply Networks III

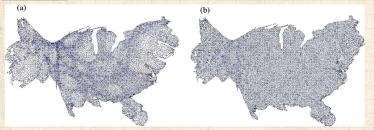
Sources

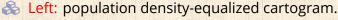
Size-density law Cartograms A reasonable derivation

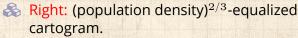
Global redistribution Public versus Private

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, 74, 016117, 2006. [2]







Facility density is uniform for $\rho_{\text{non}}^{2/3}$ cartogram.

Pocs @pocsvox

Optimal Supply Networks III

Sources

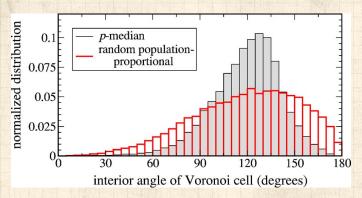
Size-density law

Cartograms

Public versus Private

References

28 of 48



From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

PoCS @pocsvox

Optimal Supply Networks III

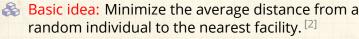
Distribute

Size-density law

Cartograms
A reasonable derivation

Global redistribution Public versus Private

Deriving the optimal source distribution:



Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

PoCS @pocsvox

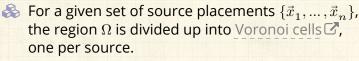
Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms A reasonable derivation

Global redistribution Public versus Private

Approximations:



Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .

As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the *i*th Voronoi cell.

 $\begin{cases} \& \end{cases}$ Approximate c_i as a constant c.

PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- $\red{solution}$ Within each cell, $A(\vec{x})$ is constant.
- & So ...integral over each of the n cells equals 1.

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Public versus Priva

Now a Lagrange multiplier story:

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

Pocs @pocsvox

Optimal Supply Networks III

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right) \underset{\text{Size-density law}}{\mathsf{Distributed}} \int_{\mathsf{Size-density law}} \mathrm{d}\vec{x} d\vec{x} = 0$$

A reasonable derivation

References

- I Can Haz Calculus of Variations ??
- & Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).
- This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\label{eq:rhopop} \rho_{\mathsf{pop}}(\vec{x}) = 2\lambda c^{-1}A(\vec{x})^{-3/2}.$$

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- $\ref{eq:property}$ Finally, we indentify $1/A(\vec{x})$ as $ho_{
 m fac}(\vec{x})$, an approximation of the local source density.
- $\red{\$}$ Substituting $ho_{\mathsf{fac}} = 1/A$, we have

$$ho_{\mathrm{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathrm{pop}}
ight)^{2/3}.$$

& Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

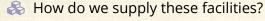
Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Global redistribution networks

One more thing:



How do we best redistribute mail? People?

How do we get beer to the pubs?

Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

& When $\delta = 1$, only number of hops matters.

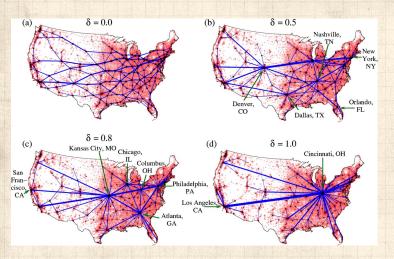
Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution networks



From Gastner and Newman (2006) [2]

PoCS @pocsvox

Optimal Supply Networks III

Distribute

Sources Size-density law

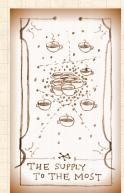
Cartograms
A reasonable derivation

Global redistribution
Public versus Private

References

9 a @ 38 of 48

PHETRIC BADIS



PoCS @pocsvox

Optimal Supply Networks III

Size-density law

Cartograms A reasonable derivation

Global redistribution

References

9 9 € 39 of 48

Public versus private facilities

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$\rho_{\rm fac} \propto \rho_{\rm pop}^{\alpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Um et al. investigate facility locations in the United States and South Korea.

PoCS @pocsvox

Optimal Supply Networks III

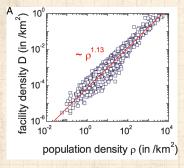
Distributed Sources Size-density law

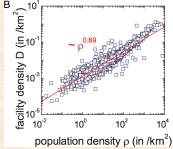
Cartograms
A reasonable derivation
Global redistribution

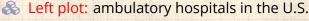
Public versus Private References

9 9 € 41 of 48

Public versus private facilities: evidence







Right plot: public schools in the U.S.

Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{\rm pop} \simeq 100$.

Optimal Supply Networks III

Distributed Sources

Cartograms A reasonable derivation Global redistribution

Public versus Private References

Public versus private facilities: evidence

US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
SK facility	α (SE)	R ²
Bank	1.18(2)	0.96
Parking place	1.13(2)	0.91
* Primary clinic	1.09(2)	1.00
* Hospital	0.96(5)	0.97
* University/college	0.93(9)	0.89
Market place	0.87(2)	0.90
* Secondary school	0.77(3)	0.98
* Primary school	0.77(3)	0.97
Social welfare org.	0.75(2)	0.84
* Police station	0.71(5)	0.94
Government office	0.70(1)	0.93
* Fire station	0.60(4)	0.93
* Public health center	0.09(5)	0.19

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level. PoCS @pocsvox

Optimal Supply Networks III

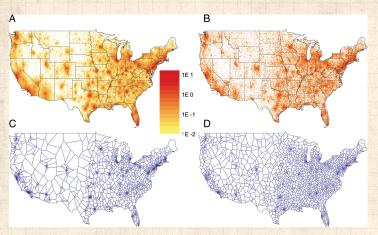
Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution Public versus Private

Public versus private facilities: evidence



A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

PoCS @pocsvox

Optimal Supply Networks III

Distributed

Sources Size-density law

Cartograms

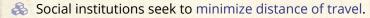
ilobal redistribution

Public versus Private
References

20 44 of 48

Public versus private facilities: the story

So what's going on?



Commercial institutions seek to maximize the number of visitors.

 n_i = population of the *i*th cell;

 $\langle r_i \rangle$ = the average travel distance to the ith facility.

 A_i = area of ith cell (s_i in Um et al. A_i)

Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^\beta \text{ with } 0 \leq \beta \leq 1.$$

 $\beta = 0$: purely commercial.

 $\beta = 1$: purely social.

PoCS @pocsvox

Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms

Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Public versus private facilities: the story

Pocs @pocsvox Optimal Supply Networks III

> Sources Size-density law

A reasonable derivation Public versus Private

References

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofac} \begin{split} \rho_{\rm fac}(\vec{x}) &= n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

 β For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.

 \Re For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.

References I

[1] M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[2] M. T. Gastner and M. E. J. Newman. Optimal design of spatial distribution networks. Phys. Rev. E, 74:016117, 2006. pdf

[4] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries.

Science, 196:523–524, 1977. pdf

PoCS @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms A reasonable derivation

References

2 9 0 47 of 48

References II

[5] G. E. Stephan. Territorial subdivision. Social Forces, 63:145-159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236-14240, 2009. pdf

Pocs @pocsvox

Optimal Supply Networks III

Sources Size-density law

A reasonable derivation

Global redistribution Public versus Private

