Social Contagion

Last updated: 2021/12/02, 16:52:59 EST

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021-2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Social Contagion Models

Background Granovetter's model Network version Final size Spreading success Groups

References

From the Atlantic

PoCS @pocsvox Social Contagion

Social Contagion Models Background Granovetter's mod Network version Final size Spreading succes

References

MARY MARY MARY MARY MARY MARY

From the Atlantic

W | |

•9 q (> 1 of 109

PoCS @pocsvox Social Contagion

Things that spread well:

Social Contagion Models

Background Granovetter's m Network version Final size Spreading succe

References

buzzfeed.com ☑:

1960: **MARY**

🗞 Dangerously self aware: 11 Elements that make a perfect viral video.

+ News ...

•9 < 0 ≥ of 109

PoCS @pocsvox Social Contagion

Social Contagion Models Spreading succes

References

LOL + cute + fail + wtf:

Please try reloading this page. If the problem persists let us know.

@pocsvox Social Contagion

Models

Final size

Background Granovetter's mode

Spreading succes

References

UIM O

@pocsvox

少 < ℃ 5 of 109

Social Contagion

The whole lolcats thing:

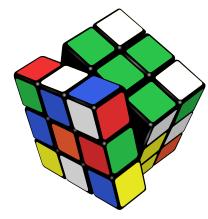
Some things really stick:

Social Contagion Models Background Granovetter's mod Network version Spreading succes

References

Social Contagion Models Background Granovetter's mode Network version Spreading success Groups

(M)


PoCS

•9 q (→ 8 of 109

Social Contagion

References

wtf + geeky + omg:

Models Background Granovetter's n

Network version Spreading success Groups

(III)

PoCS

@pocsvox

ჟqॡ 11 of 109

Social Contagion

Social Contagion

PoCS

Models

@pocsvox

Social Contagion

Social Contagion

Background Granovetter's mo

Network version

Spreading succe

References

WW |8

PoCS

@pocsvox

Background Granovetter's

Network version

Spreading succ

References

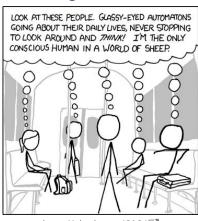
夕 Q № 10 of 109

Social Contagion

Social Contagion Models

Final size

References



夕 Q № 12 of 109

Why social contagion works so well:

http://xkcd.com/610/℃

Social Contagion

Social Contagion Examples are claimed to abound:

Fashion

Striking

Residential segregation [22]

iPhones and iThings

obesity
 obesity

Stupidity

A Harry Potter

voting

gossip

🙈 Rubik's cube 💗

religious beliefs

school shootings

leaving lectures

SIR and SIRS type contagion possible

& Classes of behavior versus specific behavior : dieting, horror movies, getting married, invading countries, ...

@pocsvox Social Contagion

Social Contagion Models Background

References

Mixed messages: Please copy, but also, don't сору ...

& Cindy Harrell appeared I in the (terrifying) music video for Ray Parker Jr.'s Ghostbusters 2.

In Stranger Things 2 7, Steve Harrington reveals his Fabergé

.... |S

�� � 14 of 109

PoCS @pocsvox Social Contagion

Social Contagion Models Background Spreading succe

References

Market much?

Advertisement enjoyed during "Herstory of Dance" , Community S4E08, April 2013.

UM | 8

•9 a (№ 15 of 109

PoCS @pocsvox Social Contagion

Models

Background

Network version

Spreading succe

References

III |

•9 a (№ 16 of 109

Social Contagion

Evolving network stories (Christakis and Fowler):

Framingham heart study:

Also: happiness
 ☐ [11], loneliness, ...

The book: Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives 🖸

Controversy:

Are your friends making you fat? ☐ (Clive) Thomspon, NY Times, September 10, 2009).

& Everything is contagious —Doubts about the social plague stir in the human superorganism (Dave Johns, Slate, April 8, 2010).

@pocsvox Social Contagion

Models

Background Granovetter's n

Spreading succes

References

Social Contagion

Two focuses for us Social Contagior

Widespread media influence

Word-of-mouth influence

We need to understand influence

Who influences whom? Very hard to measure...

What kinds of influence response functions are there?

Are some individuals super influencers? Highly popularized by Gladwell [12] as 'connectors'

The infectious idea of opinion leaders (Katz and Lazarsfeld) [19]

夕 Q № 17 of 109

@pocsvox Social Contagion

Social Contagion Models Background

Network version Spreading succes References

(M)

PoCS

Models

Background

Network version

Spreading succes

References

ჟq № 18 of 109

Social Contagion

Social Contagion

The hypodermic model of influence

The two step model of influence [19]

WW |8

PoCS

@pocsvox

Models

Background

References

UM O

PoCS

Models

Background

References

@pocsvox

•9 q (→ 20 of 109

Social Contagion

Social Contagion

Social Contagion

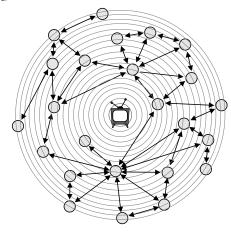
•9 q (→ 21 of 109

PoCS Social Contagion

Social Contagion Models Background

Network versio Spreading succe

References



•9 q (~ 19 of 109

UNN O

•) q (→ 22 of 109

The general model of influence: the Social Wild

Why do things spread socially?

- Because of properties of special individuals?
- Or system level properties?
- Is the match that lights the fire important?
- Yes. But only because we are storytellers: homo narrativus ☑.
- We like to think things happened for reasons ...
- Reasons for success are usually ascribed to intrinsic properties (examples next).
- Teleological stories of fame are often easy to generate and believe.
- System/group dynamics harder to understand because most of our stories are built around individuals.
- Always good to examine what is said before and after the fact ...

The Mona Lisa

- & "Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon
- Not the world's greatest painting from the start...
- & Escalation through theft, vandalism, parody, ...

Social Contagion

Models

Background

References

.... |S •9 q (≈ 23 of 109

PoCS

@pocsvox

Background

Spreading suc

References

UM | 8

PoCS

•) q (→ 25 of 109

Social Contagion

Background

Spreading succ

References

Groups

Social Contagion

Social Contagion Models

'Tattooed Guy' Was Pivotal in Armstrong Case [nytimes]

& "... Leogrande's doping sparked a series of events

The completely unpredicted fall of Eastern Europe:

Timunr Kuran: [20, 21] "Now Out of Never: The Element of Surprise in the East European Revolution of 1989"

The dismal predictive powers of editors... @pocsvox Social Contagion

少 Q (→ 26 of 109

Social Contagion

Models Background Granovetter's mod Spreading succes

PoCS

@pocsvox

Social Contagion

UM |OS

PoCS

@pocsvox

•9 q (→ 27 of 109

Social Contagion

BLVR: Did the success of Where the Wild Things Are ever feel like an albatross?

Maurice Sendak ::

MS: It's a nice book. It's perfectly nice. I can't complain about it. I remember Herman Melville said, "When I die no one is going to mention Moby-Dick. They're all going to talk about my first book, about ****ing maidens in Tahiti." He was right. No mention of Moby-Dick then. Everyone wanted another Tahitian book, a beach book. But then he kept writing deeper and deeper and then came Moby-Dick and people hated it. The only ones who liked it were Mr. and Mrs. Nathaniel Hawthorne. Moby-Dick didn't get famous until 1930.

From a 2013 Believer Magazine T interview with

Sendak named his dog Herman.

The essential Colbert interview: Pt. 1 and Pt. 2 .

Drafting success in the NFL: ☑

Social Contagior Models Background References

•9 q (→ 28 of 109

PoCS @pocsvox Social Contagion

WW | 8

Models

Background

References

W | 8

•9 q (→ 29 of 109

Messing with social connections

Social Contagion Ads based on message content (e.g., Google and email) Network version Spreading succes

Social Contagion

- Harnessing of BzzAgents to directly market through social ties.
- Generally: BzzAgents did not reveal their BzzAgent status and did not want to be paid.
- NYT, 2004-12-05: "The Hidden (in Plain Sight) Persuaders"
- One of Facebook's early advertising attempts: Beacon 2
- All of Facebook's advertising attempts.
- Seriously, Facebook. What could go wrong?

@pocsvox Social Contagion

Models

Background

References

20 of 109

PoCS @pocsvox Social Contagion

Social Contagion

UM O

•9 q (→ 31 of 109

PoCS Social Contagion

Social Contagion Models Background

Spreading succe

References

夕 Q № 32 of 109

Getting others to do things for you

A very good book: 'Influence' [8] by Robert Cialdini

Six modes of influence:

- 1. Reciprocation: The Old Give and Take... and Take; e.g., Free samples, Hare Krishnas.
- 2. Commitment and Consistency: Hobgoblins of the Mind; e.g., Hazing.
- 3. Social Proof: Truths Are Us: e.g., Jonestown ... Kitty Genovese (contested).
- 4. Liking: The Friendly Thief; e.g., Separation into groups is enough to cause problems.
- 5. Authority: Directed Deference; e.g., Milgram's obedience to authority experiment.
- 6. Scarcity: The Rule of the Few; e.g., Prohibition.

Social contagion

- & Cialdini's modes are heuristics that help up us get through life.
- Useful but can be leveraged...

Other acts of influence:

- & Conspicuous Consumption (Veblen, 1912)
- Conspicuous Destruction (Potlatch)

Social Contagion

Some important models:

- Tipping models—Schelling (1971) [22, 23, 24]
 - Simulation on checker boards
 - ldea of thresholds
 - Polygon-themed online visualization. (Includes optional diversity-seeking proclivity.)
- Threshold models—Granovetter (1978) [15]
- A Herding models—Bikhchandani, Hirschleifer, Welch (1992) [2, 3]
 - Social learning theory, Informational cascades,...

@pocsvox

Social Contagion

Social Contagion

Models

Background Granovetter's mo

Spreading succes

References

Social contagion models

Thresholds

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- & 'Others' may be everyone in a population, an individual's close friends, any reference group.
- Response can be probabilistic or deterministic.
- Individual thresholds can vary
- Assumption: order of others' adoption does not matter... (unrealistic).
- Assumption: level of influence per person is uniform (unrealistic).

.... |S

•9 q (≈ 33 of 109

PoCS @pocsvox Social Contagion

Social Contagion

Models

Background

Spreading succe

References

UM | 8

PoCS

Models

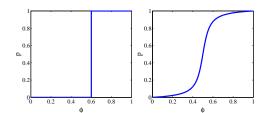
Background

Spreading succ

References

Groups

•9 q (→ 35 of 109

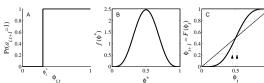

Social Contagion Social Contagion

Social Contagion

Some possible origins of thresholds:

- & Inherent, evolution-devised inclination to coordinate, to conform, to imitate. [1]
- & Lack of information: impute the worth of a good or behavior based on degree of adoption (social proof)
- Economics: Network effects or network externalities
 - Externalities = Effects on others not directly involved in a transaction
 - Examples: telephones, fax machine, Facebook, operating systems
 - An individual's utility increases with the adoption level among peers and the population in general

Threshold models—response functions


- Example threshold influence response functions: deterministic and stochastic
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Two states: S and I.

Threshold models @pocsvox Social Contagion

Social Contagion Action based on perceived behavior of others:

Background Granovetter's mode Spreading succe References

Models

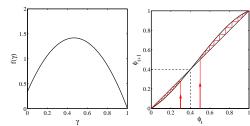
Two states: S and I.

Threshold models

- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time update (strong assumption!)
- This is a Critical mass model

◆) Q (~ 38 of 109

@pocsvox Social Contagion


Social Contagion

Models

Background Network version Spreading succes

References

Another example of critical mass model:

PoCS @pocsvox

UM O

PoCS

@pocsvox

Models

Spreading su

References

Social Contagion

Granovetter's mode

Social Contagion

•9 q (→ 42 of 109

Social Contagion Models

Spreading suc

References

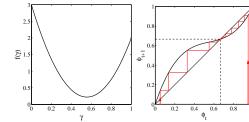
PoCS @pocsvox Social Contagion

•> q (→ 39 of 109

UM | | | |

References

III |


•9 q (~ 41 of 109

Threshold models

WW |8 ◆) < (~ 43 of 109

PoCS Social Contagion

Social Contagion

Models

Spreading succe

References

.... |S ◆) q (~ 37 of 109

2 9 € 44 of 109

Threshold models

Chaotic behavior possible [17, 16, 9, 18]

- \Re Period doubling arises as map amplitude r is increased.
- Synchronous update assumption is crucial

Threshold models—Nutshell

Implications for collective action theory:

- 1. Collective uniformity ⇒ individual uniformity
- 2. Small individual changes ⇒ large global changes
- 3. The stories/dynamics of complex systems are conceptually inaccessible for individual-centric narratives.
- 4. System stories live in left null space of our stories—we can't even see them.
- 5. But we happily impose simplistic, individual-centric stories—we can't help ourselves **♂**.

Many years after Granovetter and Soong's work:

- "A simple model of global cascades on random networks"
 - D. J. Watts. Proc. Natl. Acad. Sci., 2002 [26]
 - Mean field model → network model
 - Individuals now have a limited view of the world

We'll also explore:

- "Seed size strongly affects cascades on random networks" [14] Gleeson and Cahalane, Phys. Rev. E, 2007.
- & "Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks" [10] Dodds, Harris, and Payne, Phys. Rev. E, 2011
- 4 "Influentials, Networks, and Public Opinion" Formation" [27] Watts and Dodds, J. Cons. Res., 2007.

PoCS @pocsvox Social Contagion

Models Granovetter's mode Spreading suc

References

All nodes have threshold $\phi = 0.2$.

Threshold model on a network

Threshold model on a network

.... |S

•9 q (≈ 45 of 109

PoCS @pocsvox Social Contagion

Social Contagion

Models

- by a network. Network is sparse.
- \mathbb{A} Individual *i* has k_i contacts.
- Influence on each link is reciprocal and of unit weight.

Interactions between individuals now represented

- & Each individual *i* has a fixed threshold ϕ_i .
- Individuals repeatedly poll contacts on network.
- Synchronous, discrete time updating.
- Individual i becomes active when fraction of active contacts $\frac{a_i}{k_i} \geq \phi_i$.
- Individuals remain active when switched (no recovery = SI model).

◆) < (> 46 of 109

PoCS @pocsvox

Social Contagion

Social Contagion Models Background Granovetter's mod

Network version Final size Spreading succes

References

Snowballing

First study random networks:

- \mathbb{R} Start with N nodes with a degree distribution P_{l}
- Nodes are randomly connected (carefully so)
- Aim: Figure out when activation will propagate
- Determine a cascade condition

The Cascade Condition:

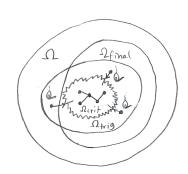
- 1. If one individual is initially activated, what is the probability that an activation will spread over a network?
- 2. What features of a network determine whether a cascade will occur or not?

Models

Background

References

UM |OS


PoCS

@pocsvox

◆9 q ← 49 of 109

Social Contagion

Example random network structure:

 $\Omega_{\text{crit}} = \Omega_{\text{vuln}} =$ critical mass = global vulnerable component

 $\Omega_{\text{trig}} =$ triggering component

 $\Omega_{\text{final}} =$ potential extent of spread

 Ω = entire network

 $\Omega_{\mathsf{crit}} \subset \Omega_{\mathsf{trig}}; \ \Omega_{\mathsf{crit}} \subset \Omega_{\mathsf{final}}; \ \mathsf{and} \ \Omega_{\mathsf{trig}}, \Omega_{\mathsf{final}} \subset \Omega.$

UM O

少 Q (> 52 of 109

Snowballing

Follow active links

The most gullible

Vulnerables:

Social Contagion Models Background Granovetter's m

Network version Final size Spreading succes References

um |S

PoCS

@pocsvox

Models

Background Granovetter's mod

Network version Final size

Spreading success

References

•> q (→ 50 of 109

Social Contagion

Social Contagion

An active link is a link connected to an activated

- node. If an infected link leads to at least 1 more infected
- link, then activation spreads.
- & We need to understand which nodes can be activated when only one of their neigbors becomes active.

@pocsvox

Models

References

Social Contagion

Social Contagion

PoCS @pocsvox Social Contagion

Social Contagion Models Background Network version Final size

References

WW |8

•9 q (→ 53 of 109

PoCS Social Contagion

Social Contagion Models Background Granovetter's Network version Final size

Spreading succes

References

$1/k_i \ge \phi_i$

We call individuals who can be activated by just

one contact being active vulnerables

 \clubsuit The vulnerability condition for node i:

- & Which means # contacts $k_i \leq |1/\phi_i|$
- For global cascades on random networks, must have a global cluster of vulnerables [26]
- Cluster of vulnerables = critical mass
- \mathbb{A} Network story: 1 node \rightarrow critical mass \rightarrow everyone.

UNN O

2 9 € 54 of 109

III | ◆) q (~ 48 of 109

Cascade condition

Back to following a link:

- A randomly chosen link, traversed in a random direction, leads to a degree k node with probability $\propto kP_k$.
- \clubsuit Follows from there being k ways to connect to a node with degree k.
- Normalization:

$$\sum_{k=0}^{\infty} k P_k = \langle k \rangle$$

🔏 So

 $P(\text{linked node has degree } k) = \frac{kP_k}{\langle k \rangle}$

Cascade condition

Next: Vulnerability of linked node

& Linked node is vulnerable with probability

$$\beta_k = \int_{\phi_*'=0}^{1/k} f(\phi_*') \mathrm{d}\phi_*'$$

- \mathbb{R} If linked node is vulnerable, it produces k-1 new outgoing active links
- A If linked node is not vulnerable, it produces no active links.

Cascade condition

Putting things together:

& Expected number of active edges produced by an active edge:

$$\begin{split} R = \left[\sum_{k=1}^{\infty} \underbrace{\frac{(k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle}}_{\text{success}}} \right. &+ \underbrace{\left. \underbrace{\frac{0 \cdot (1-\beta_k) \cdot \frac{kP_k}{\langle k \rangle}}_{\text{failure}}} \right]}_{\text{failure}} \right] \end{split}$$

PoCS @pocsvox Social Contagion

Models Background Network version Final size

References

So... for random networks with fixed degree distributions, cacades take off when:

$$\sum_{k=1}^{\infty} (k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle} > 1.$$

 β_k = probability a degree k node is vulnerable.

 $P_k = \text{probability a node has degree } k.$

W | |

•9 q (≈ 55 of 109

PoCS @pocsvox Social Contagion

Cascade condition

Two special cases:

Cascade condition

Social Contagior Models

Background Granovetter's n Network version Final size Spreading succes Groups

UM | 8

PoCS

@pocsvox

Social Contagion

Social Contagion Models

Background Granovetter's m

Network version Final size Spreading success

References

Groups

少 q (→ 56 of 109

 $\{$ (1) Simple disease-like spreading succeeds: $\beta_k = \beta$

$$\beta \cdot \sum_{k=1}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} > 1.$$

& (2) Giant component exists: $\beta = 1$

Cascades on random networks

Final

Fraction of Vulnerables

Example networks

$$1 \cdot \sum_{k=1}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} > 1.$$

 $\widehat{S}^{0.0}$

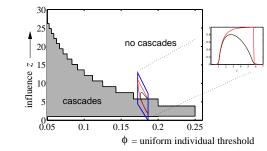
@pocsvox Social Contagion

Cascade window for random networks

Models Background Granovetter's m

PoCS

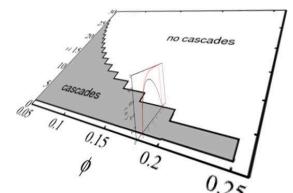
WW | 8


@pocsvox

◆9 Q ← 58 of 109

Social Contagion

Social Contagion Models


Background Granovetter's mod

& 'Cascade window' widens as threshold φ decreases.

Lower thresholds enable spreading.

Cascade window for random networks

Models Background Network version Final size

PoCS

@pocsvox

Social Contagion

References

W | |

少 q (~ 61 of 109

@pocsvox Social Contagion

Social Contagion Models Background Granovetter's Network version Final size Spreading su

∙9 q (~ 59 of 109

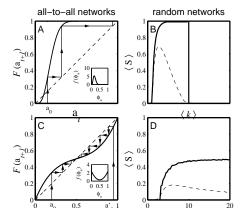
PoCS Social Contagion

Social Contagion Models Background Granovetter's r

Network version Final size Spreading succes

🗞 System may be 'robust-yetfragile'.

Cascades occur


cluster > 0.

only if size of

max vulnerable

facilitates spreading.

All-to-all versus random networks

 $\langle k \rangle$

Social Contagion Models Network version Final size

Spreading succe References

WW |8

PoCS

@pocsvox

夕 Q ← 62 of 109

Social Contagion

um |8|

•9 a (№ 60 of 109

WW | 8 2 9 € 63 of 109

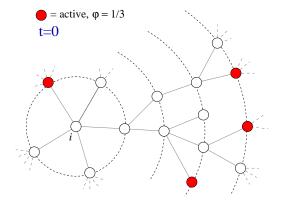
UM |8

少 Q (> 57 of 109

'Ignorance'

Cascade window—summary

For our simple model of a uniform threshold:


- 1. Low $\langle k \rangle$: No cascades in poorly connected networks.
 - No global clusters of any kind.
- 2. High $\langle k \rangle$: Giant component exists but not enough
- 3. Intermediate $\langle k \rangle$: Global cluster of vulnerables exists.
 - Cascades are possible in "Cascade window."

PoCS @pocsvox

Social Contagion

References

Expected size of spread

୬ ৭ (> 64 of 109

Threshold contagion on random networks

- Next: Find expected fractional size of spread.
- Not obvious even for uniform threshold problem.
- & Difficulty is in figuring out if and when nodes that $need \ge 2$ hits switch on.
- Problem beautifully solved for infinite seed case by Gleeson and Cahalane: "Seed size strongly affects cascades on random networks," Phys. Rev. E, 2007. [14]
- Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. Rev. E, 2008. [13]

Determining expected size of spread:

random networks (again)

now exceeded.

now exceeded.

reach i.

node *i* to become active at time *t*:

• t=0: i is one of the seeds (prob = ϕ_0)

 \aleph Randomly turn on a fraction ϕ_0 of nodes at time

& Capitalize on local branching network structure of

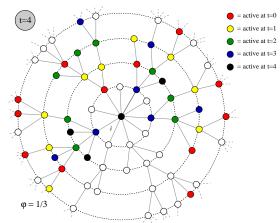
Now think about what must happen for a specific

• t = 1: i was not a seed but enough of i's friends

switched on at time t = 0 so that i's threshold is

• t = 2: enough of *i*'s friends and friends-of-friends

switched on at time t = 0 so that i's threshold is


• t = n: enough nodes within n hops of i switched

@pocsvox Social Contagion

Models Final size

Expected size of spread

Expected size of spread

•9 q (→ 66 of 109

PoCS

@pocsvox Social Contagion

Social Contagion

References

Notes:

- & Calculations are possible if nodes do not become inactive (strong restriction).
- Not just for threshold model—works for a wide range of contagion processes.
- We can analytically determine the entire time evolution, not just the final size.
- We can in fact determine **Pr**(node of degree k switching on at time t).
- Asynchronous updating can be handled too.

Expected size of spread Social Contagion

@pocsvox

Models

Final size Spreading

.... |S

@pocsvox

Final size

References

iii |S

PoCS

@pocsvox

Models

Background Granovetter's mod

Network version

References

•> q (→ 69 of 109

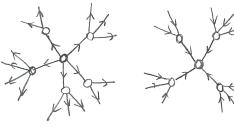
Social Contagion

Social Contagion

•9 q (№ 68 of 109

Social Contagion

Social Contagion


Social Contagior

Background Granovetter's mode

Pleasantness:

Taking off from a single seed story is about expansion away from a node.

Extent of spreading story is about contraction at a

少 Q (~ 71 of 109

@pocsvox

Models

Final size Spreading sur Groups

References

Social Contagion

PoCS @pocsvox Social Contagion

Social Contagior Models

Network version Final size

References

Expected size of spread

Motation:

 $\phi_{k,t} = \mathbf{Pr}(\mathsf{a} \mathsf{ degree} \; k \mathsf{ node} \mathsf{ is active at time} \; t).$

Notation: $B_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).

 \bigotimes Our starting point: $\phi_{k,0} = \phi_0$.

 $\bigotimes_{i} \binom{k}{i} \phi_0^{j} (1 - \phi_0)^{k-j} = \Pr(j \text{ of a degree } k \text{ node's})$ neighbors were seeded at time t=0).

 \Re Probability a degree k node was a seed at t=0 is ϕ_0 (as above).

 \Re Probability a degree k node was not a seed at t=0 is

Combining everything, we have:

Notation: call this probability θ_t .

 \mathfrak{S} Story analogous to t=1 case. For node i:

 $\mbox{\&}$ We already know $\theta_0 = \phi_0$.

 $\phi_{k,1} = \phi_0 + (1 - \phi_0) \sum_{i=0}^{k} {k \choose j} \phi_0^j (1 - \phi_0)^{k-j} B_{kj}.$

少 Q (> 72 of 109

PoCS

Social Contagion For general t, we need to know the probability an edge

Social Contagion Models

References

 $\phi_{i,\,t+1} = \frac{\phi_0}{\phi_0} + (1-\phi_0) \sum_{i=0}^{k_i} \binom{k_i}{j} \theta_t^{\,j} (1-\theta_t)^{k_i-j} B_{k_i j}.$

& Average over all nodes to obtain expression for ϕ_{t+1} :

coming into a degree k node at time t is active.

 $\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}.$

& So we need to compute θ_{\star} ... massive excitement...

UIN S 少 Q № 70 of 109 UNN O

2 9 0 73 of 109

III | on at t = 0 and their effects have propagated to 少 Q № 67 of 109

Expected size of spread

First connect θ_0 to θ_1 :

 $\theta_1 = \phi_0 +$

$$(1-\phi_0) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} \binom{k-1}{j} \theta_0^{\ j} (1-\theta_0)^{k-1-j} B_{kj}$$

- $\frac{kP_k}{\langle k \rangle} = R_k$ = **Pr** (edge connects to a degree k node).
- $\underset{i=0}{\&} \sum_{k=0}^{k-1}$ piece gives **Pr**(degree node k activates) of its neighbors k-1 incoming neighbors are active.
- $\Leftrightarrow \phi_0$ and $(1-\phi_0)$ terms account for state of node at
- & See this all generalizes to give θ_{t+1} in terms of θ_t ...

Two pieces: edges first, and then nodes

1. $\theta_{t+1} =$ exogenous

Expected size of spread

$$+(1-\phi_0)\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_t^{\ j}(1-\theta_t)^{k-1-j}B_{kj}$$

with $\theta_0 = \phi_0$.

2. $\phi_{t+1} =$

$$\underbrace{\frac{\phi_0}{\exp \text{nous}}}_{\text{exogenous}} + (1 - \phi_0) \underbrace{\sum_{k=0}^{\infty} P_k \sum_{j=0}^k \binom{k}{j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}}_{\text{social effects}}.$$

Expected size of spread

Iterative map for θ_t is key:

$$\theta_{t+1} = \underbrace{\phi_0}_{\text{exogenous}}$$

$$+(1-\phi_0)\underbrace{\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_t^{\ j}(1-\theta_t)^{k-1-j}B_{kj}}_{\text{social effects}}$$

$$=G(\theta_t;\phi_0)$$

@pocsvox Social Contagion

Final size Spreading su Groups

Social Contagion single seed in limit $\phi_0 \to 0$. Models

 $\begin{cases} \& \end{cases}$ Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.

Expected size of spread:

Right First: if self-starters are present, some activation is

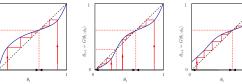
$$G(0;\phi_0) = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet B_{k0} > 0$$

meaning $B_{k0} > 0$ for at least one value of $k \ge 1$.

 \Re If $\theta = 0$ is a fixed point of G (i.e., $G(0; \phi_0) = 0$) then spreading occurs if

$$G'(0;\phi_0) = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

Expected size of spread:


In words:

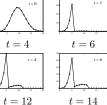
- \Re If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- \mathbb{R} If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

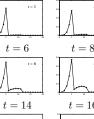
Non-vanishing seed case:

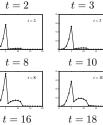
- \mathbb{R} If G has a stable fixed point at $\theta = 0$, and an unstable fixed point for some $0 < \theta_* < 1$, then for $\theta_0 > \theta_*$, spreading takes off.
- ϕ_0 , we also change G.
- A version of a critical mass model again.

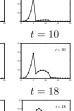
General fixed point story:

- $\mbox{\&}$ Given $\theta_0 (=\phi_0)$, θ_∞ will be the nearest stable fixed
- n.b., adjacent fixed points must have opposite stability types.
- \mathbb{A} Important: Actual form of G depends on ϕ_0 .
- & So choice of ϕ_0 dictates both G and starting point—can't start anywhere for a given G.


Early adopters—degree distributions


t=1


Social Contagior Models Background Granovetter's mode Final size


@pocsvox

Social Contagion

References

@pocsvox

Models

Social Contagion

Social Contagion

Background Granovetter's mor

Spreading success

 $P_{k,t}$ versus k

Unpublished?

@pocsvox Social Contagion

少 Q (~ 77 of 109

Social Contagior Models Background Granovetter's m Network version Final size

References

UM |OS

PoCS

◆) q (> 78 of 109

Social Contagion

Social Contagion

Models

Final size

Background Granovetter's mo

I. Consum. Res., **34**, 441–458, 2007. [27]

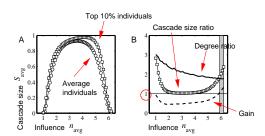
Exploration of threshold model of social contagion on various networks.

- "Influentials" are limited in power.
- Connected groups of weakly influential-vulnerable" individuals are key.
- Average individuals can have more power than well connected ones.

W |S 少 Q (№ 81 of 109

@pocsvox Social Contagion

Social Contagior Models Network version Spreading success


WW |8 少 Q (№ 82 of 109

PoCS Social Contagion

Social Contagion Models Network version

Spreading success References

The multiplier effect:

- Fairly uniform levels of individual influence.
- Multiplier effect is mostly below 1.

III | •9 q (→ 79 of 109

少 Q № 76 of 109

III |

Retrieve cascade condition for spreading from a

 $G(0;\phi_0) = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet B_{k0} > 0.$

.... |S

� Q ← 74 of 109

@pocsvox Social Contagion

Social Contagior Models Final size

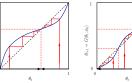
PoCS

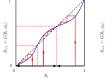
Models

Final size Spreading

References

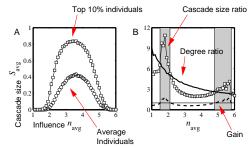
@pocsvox

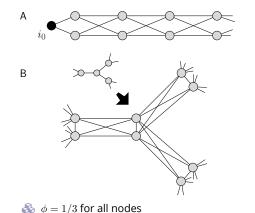

Social Contagion


Social Contagion

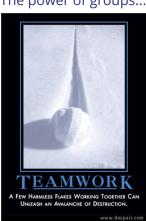
•9 q (→ 75 of 109

& Cascade condition is more complicated for $\phi_0 > 0$.


 \mathfrak{F} Tricky point: G depends on ϕ_0 , so as we change


- point, either above or below.

The multiplier effect:



Skewed influence distribution example.

Special subnetworks can act as triggers

The power of groups...

"A few harmless flakes working together can unleash an avalanche of destruction."

@pocsvox Social Contagion

Models

Background Granovetter's mod

Network version

Spreading success

References

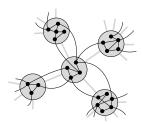
Extensions

"Threshold Models of Social Influence" Watts and Dodds,

The Oxford Handbook of Analytical Sociology, **34**, 475–497, 2009. ^[28]

- Assumption of sparse interactions is good
- Degree distribution is (generally) key to a network's function
- Still, random networks don't represent all networks
- Major element missing: group structure

W | |


� � � 84 of 109

PoCS @pocsvox Social Contagion

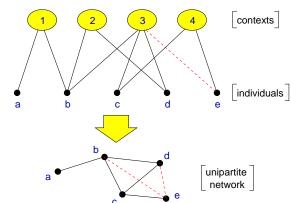
Social Contagion Models Background Granovetter's n Spreading succes

References

Group structure—Ramified random networks

p = intergroup connection probability q = intragroup connection probability.

Bipartite networks


•9 a (№ 85 of 109

W | |

PoCS Social Contagion

Social Contagion Models Background Granovetter's m Network version

Groups References

@pocsvox Social Contagion

Context distance

Social Contagion Models Background Granovetter's mod Network version Final size

Groups References

occupation education health care high school kindergarter teacher

WW |8

PoCS

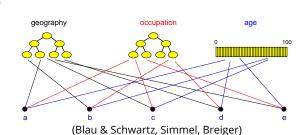
@pocsvox Social Contagion

Models

Network version

References

◆9 < ℃ 88 of 109


@pocsvox Social Contagion

UM |OS

Social Contagion Models Background Granovetter's mod Network version

Groups References

Generalized affiliation model

•2 € 91 of 109 PoCS

@pocsvox Social Contagion

Social Contagion Models Background Granovetter's Network version Groups References

(M)

∙9 q (~ 89 of 109

PoCS Social Contagion

Social Contagion Models Background Granovetter's m Network version

Groups

References

& Connect nodes with probability $\propto e^{-\alpha d}$ α = homophily parameter

with triadic closure

d = distance between nodes (height of lowest common ancestor)

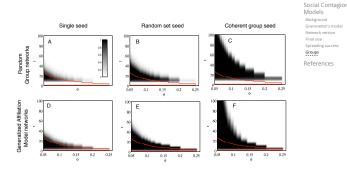
Generalized affiliation model networks

 \mathfrak{F}_{2} = intragroup probability of friend-of-friend connection

PoCS Social Contagion

Social Contagion Models Background Granovetter's Network version Spreading succe

Groups References


◆) < ↑ 87 of 109

.... |S

despair.com

少 Q (~ 93 of 109

Cascade windows for group-based networks

@pocsvox Social Contagion

Background

Final size

"Without followers, evil cannot spread." -Leonard Nimoy

Summary Network version

- & 'Influential vulnerables' are key to spread.
- & Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Seems that cascade condition is a global one.
- Most extreme/unexpected cascades occur in highly connected networks
- 'Influentials' are posterior constructs.
- Many potential influentials exist.

UM | 8

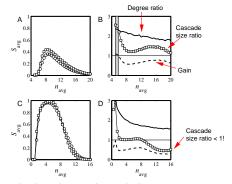
@pocsvox

Models

Background Granovetter's

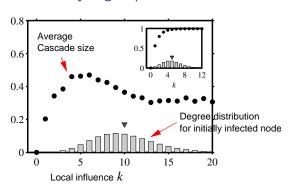
Network version

Spreading succes


References

Groups

•94 of 109


Social Contagion

Multiplier effect for group-based networks:

Multiplier almost always below 1.

Assortativity in group-based networks

The most connected nodes aren't always the most 'influential.'

Degree assortativity is the reason.

Social Contagion

Social contagion

Social contagion

Implications

References I

- Focus on the influential vulnerables.
- Create entities that can be transmitted successfully through many individuals rather than broadcast from one 'influential.'
- Only simple ideas can spread by word-of-mouth. (Idea of opinion leaders spreads well...)
- Want enough individuals who will adopt and display.
- Displaying can be passive = free (yo-yo's, fashion),
- Entities can be novel or designed to combine with others, e.g. block another one.

UM | 8

•9 q (→ 95 of 109

PoCS @pocsvox

Social Contagion Social Contagion

Models Background Granovetter's m Network version Spreading succe Groups References

.... |S

少 Q (→ 96 of 109

- S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ., 100:992-1026, 1992.
- S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others:

- or active = harder to achieve (political messages).

A. Bentley, M. Earls, and M. J. O'Brien. I'll Have What She's Having: Mapping Social Behavior.

MIT Press, Cambridge, MA, 2011.

Conformity, fads, and informational cascades. J. Econ. Perspect., 12(3):151–170, 1998. pdf 🗹

PoCS @pocsvox Social Contagion

Social Contagior

Background Granovetter's mode

Network version

Models

Groups

References II

I. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412-1427, 1999. pdf

[5] J. M. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529-2532, 2000. pdf

N. A. Christakis and J. H. Fowler. The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357:370-379, 2007. pdf 2

PoCS

Models

Background

Network version

Spreading suc

References

@pocsvox

Social Contagion

Social Contagion

•9 q ← 101 of 109

PoCS

@pocsvox

Models

Background

Network version

Spreading su

References

Social Contagion

References III

Social Contagior Models Background Granovetter's mode Network version Final size Groups References

UM OS

@pocsvox

少 Q № 97 of 109

Social Contagion

N. A. Christakis and J. H. Fowler. The collective dynamics of smoking in a large social network. New England Journal of Medicine, 358:2249-2258, 2008. pdf ☑

R. B. Cialdini. Influence: Science and Practice. Allyn and Bacon, Boston, MA, 4th edition, 2000.

P. S. Dodds, K. D. Harris, and C. M. Danforth. Limited Imitation Contagion on random networks: Chaos, universality, and unpredictability. Phys. Rev. Lett., 110:158701, 2013. pdf

PoCS

um |S 少 Q ← 98 of 109

PoCS

References IV Social Contagion

Social Contagion Models Background Granovetter's mod Network version Spreading succes

References

[10] P. S. Dodds, K. D. Harris, and J. L. Payne. Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks. Phys. Rev. E, 83:056122, 2011. pdf

[11] I. H. Fowler and N. A. Christakis.

Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. BMJ, 337:article #2338, 2008. pdf

[12] M. Gladwell. The Tipping Point. Little, Brown and Company, New York, 2000.

•9 q (> 100 of 109

UNN O

少 Q № 103 of 109

Models Background Granovetter's Network version Spreading succe Groups

•9 q (№ 102 of 109

Social Contagion

Social Contagion

References

References V

[13] J. P. Gleeson.

Cascades on correlated and modular random networks.

Phys. Rev. E, 77:046117, 2008. pdf

[14] J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random networks. Phys. Rev. E, 75:056103, 2007. pdf

[15] M. Granovetter.

Threshold models of collective behavior. Am. J. Sociol., 83(6):1420-1443, 1978. pdf

References VI

[16] M. Granovetter and R. Soong. Threshold models of diversity: Chinese restaurants, residential segregation, and the spiral of silence. Sociological Methodology, 18:69–104, 1988. pdf

[17] M. S. Granovetter and R. Soong. Threshold models of interpersonal effects in consumer demand. J. Econ. Behav. Organ., 7:83-99, 1986. pdf 2

[18] K. D. Harris, C. M. Danforth, and P. S. Dodds. Dynamical influence processes on networks: General theory and applications to social contagion. Phys. Rev. E, 88:022816, 2013. pdf

@pocsvox

Social Contagion

Models

Network version

References

W | |

PoCS

@pocsvox

Models

Background Granovetter's m

Network version

Spreading succes Groups

References

Social Contagion

Social Contagion

◆) Q (> 104 of 109

References VII Social Contagion

[19] E. Katz and P. F. Lazarsfeld. Personal Influence. The Free Press, New York, 1955.

[20] T. Kuran.

Now out of never: The element of surprise in the east european revolution of 1989. World Politics, 44:7–48, 1991. pdf ☑

[21] T. Kuran.

Private Truths, Public Lies: The Social Consequences of Preference Falsification. Harvard University Press, Cambridge, MA, Reprint edition, 1997.

[22] T. C. Schelling. Dynamic models of segregation. J. Math. Sociol., 1:143–186, 1971. pdf 🗗

References VIII

[23] T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. pdf 2

[24] T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, 1978.

[25] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003.

PoCS @pocsvox Social Contagion

Social Contagion

Background Granovetter's mode

Network version

Spreading success

References

UM OS

@pocsvox

Models

References IX [26] D. J. Watts.

A simple model of global cascades on random networks. Proc. Natl. Acad. Sci., 99(9):5766-5771, 2002. pdf 🖸

[27] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441-458, 2007. pdf 🖸

[28] D. J. Watts and P. S. Dodds. Threshold models of social influence. In P. Hedström and P. Bearman, editors, The Oxford Handbook of Analytical Sociology chapter 20, pages 475-497. Oxford University Press, Oxford, UK, 2009. pdf

PoCS

@pocsvox

Models

Network version

Spreading suc

References

Social Contagion

W |S

PoCS

@pocsvox

少 Q № 108 of 109

Social Contagion

Social Contagion

Social Contagion Models Background Granovetter's mode Network version Spreading succes

少 q (~ 106 of 109

References

References X

[29] U. Wilensky.

Netlogo segregation model.

Social Contagion Models Network versio

Spreading sur

http://ccl.northwestern.edu/netlogo/models/Segregation. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL., 1998.

UN S

W |S

•9 q (→ 107 of 109

•9 a (№ 105 of 109

.... |S

夕 Q № 109 of 109