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Scalingarama

General observation:
Systems (complex or not) that cross many spatial and
temporal scales often exhibit some form of scaling.

Outline—All about scaling:

 Basic definitions.
 Examples.

In PoCS, Vol. 2:

 Advances in measuring your power-law
relationships.

 Scaling in blood and river networks.
 The Unsolved Allometry Theoricides.
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Definitions

A power law relates two variables 𝑥 and 𝑦 as follows:

𝑦 = 𝑐𝑥𝛼

 𝛼 is the scaling exponent (or just exponent)
 𝛼 can be any number in principle but we will find

various restrictions.
 𝑐 is the prefactor (which can be important!)
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Definitions

 The prefactor 𝑐 must balance dimensions.

 Imagine the height ℓ and volume 𝑣 of a family of
shapes are related as:

ℓ = 𝑐𝑣1/4

 Using [⋅] to indicate dimension, then

[𝑐] = [𝑙]/[𝑉 1/4] = 𝐿/𝐿3/4 = 𝐿1/4.

 More on this later with the Buckingham 𝜋
theorem.
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Looking at data

 Power-law relationships are linear in log-log space:

𝑦 = 𝑐𝑥𝛼

⇒ log𝑏𝑦 = 𝛼log𝑏𝑥 + log𝑏𝑐
with slope equal to 𝛼, the scaling exponent.

 Much searching for straight lines on log-log or
double-logarithmic plots.

 Good practice: Always, always, always use base 10.
 Yes, the Dozenalists are right, 12 would be

better.
 But: hands.1And social pressure.
 Talk only about orders of magnitude (powers of

10).

1Probably an accident of evolution—debated.

https://en.wikipedia.org/wiki/Duodecimal
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A beautiful, heart-warming example:

 𝐺 = volume of
gray matter:
‘computing
elements’

 𝑊 = volume of
white matter:
‘wiring’

 𝑊 ∼ 𝑐𝐺1.23
 from Zhang & Sejnowski, PNAS (2000) [38]
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Why is 𝛼 ≃ 1.23?

Quantities (following Zhang and Sejnowski):
 𝐺 = Volume of gray matter (cortex/processors)
 𝑊 = Volume of white matter (wiring)
 𝑇 = Cortical thickness (wiring)
 𝑆 = Cortical surface area
 𝐿 = Average length of white matter fibers
 𝑝 = density of axons on white matter/cortex

interface

A rough understanding:

 𝐺 ∼ 𝑆𝑇 (convolutions are okay)
 𝑊 ∼ 1

2𝑝𝑆𝐿
 𝐺 ∼ 𝐿3

← this is a little sketchy...

 Eliminate 𝑆 and 𝐿 to find 𝑊 ∝ 𝐺4/3/𝑇
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Why is 𝛼 ≃ 1.23?

A rough understanding:
 We are here: 𝑊 ∝ 𝐺4/3/𝑇

 Observe weak scaling 𝑇 ∝ 𝐺0.10±0.02.
 Implies 𝑆 ∝ 𝐺0.9 → convolutions fill space.
 ⇒ 𝑊 ∝ 𝐺4/3/𝑇 ∝ 𝐺1.23±0.02
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Tricksiness:

 With 𝑉 = 𝐺 + 𝑊 , some power laws must be
approximations.

 Measuring exponents is a hairy business...
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Disappointing deviations from scaling:

 Per George
Carlin

 Yes, should be
the median.
#painful

Image from here

The koala, a few roos short in
the top paddock:
 Very small brains relative

to body size.
 Wrinkle-free, smooth.
 Not many algorithms

needed:

 Only eat eucalyptus leaves
(no water)

(Will not eat leaves picked
and presented to them)

 Move to the next tree.
 Sleep.
 Defend themselves if

needed (tree-climbing
crocodiles, humans).

 Occasionally make more
koalas.

https://www.goodreads.com/quotes/43852-think-of-how-stupid-the-average-person-is-and-realize
https://www.goodreads.com/quotes/43852-think-of-how-stupid-the-average-person-is-and-realize
https://imgflip.com/i/thbus
https://en.wikipedia.org/wiki/Koala
https://en.wikipedia.org/wiki/Koala#Description
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Good scaling:

General rules of thumb:
 High quality: scaling persists over

three or more orders of magnitude
for each variable.

 Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

 Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.



The PoCSverse
Scaling
17 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Good scaling:

General rules of thumb:
 High quality: scaling persists over

three or more orders of magnitude
for each variable.

 Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

 Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.



The PoCSverse
Scaling
17 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Good scaling:

General rules of thumb:
 High quality: scaling persists over

three or more orders of magnitude
for each variable.

 Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

 Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.



The PoCSverse
Scaling
18 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Unconvincing scaling:

Average walking speed as a function of city
population:

24

Two problems:
1. use of natural log, and
2. minute varation in

dependent variable.

 from Bettencourt et al. (2007) [4]; otherwise totally
great—more later.
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Definitions

Power laws are the signature
of scale invariance:

Scale invariant ‘objects’
look the ‘same’
when they are appropriately
rescaled.

 Objects = geometric shapes, time series, functions,
relationships, distributions,...

 ‘Same’ might be ‘statistically the same’
 To rescale means to change the units of

measurement for the relevant variables
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Scale invariance

Our friend 𝑦 = 𝑐𝑥𝛼:
 If we rescale 𝑥 as 𝑥 = 𝑟𝑥′ and 𝑦 as 𝑦 = 𝑟𝛼𝑦′,

 then
𝑟𝛼𝑦′ = 𝑐(𝑟𝑥′)𝛼


⇒ 𝑦′ = 𝑐𝑟𝛼𝑥′𝛼𝑟−𝛼


⇒ 𝑦′ = 𝑐𝑥′𝛼
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Scale invariance

Compare with 𝑦 = 𝑐𝑒−𝜆𝑥:
 If we rescale 𝑥 as 𝑥 = 𝑟𝑥′, then

𝑦 = 𝑐𝑒−𝜆𝑟𝑥′

 Original form cannot be recovered.
 Scale matters for the exponential.

More on 𝑦 = 𝑐𝑒−𝜆𝑥:

 Say 𝑥0 = 1/𝜆 is the characteristic scale.
 For 𝑥 ≫ 𝑥0, 𝑦 is small,

while for 𝑥 ≪ 𝑥0, 𝑦 is large.
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Scale invariance

Compare with 𝑦 = 𝑐𝑒−𝜆𝑥:
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Isometry:

 Dimensions scale linearly
with each other.

Allometry:

 Dimensions scale
nonlinearly.

Allometry:

 Refers to differential growth rates of the parts of a
living organism’s body part or process.

 First proposed by Huxley and Teissier, Nature, 1936
“Terminology of relative growth” [15, 34]

http://en.wikipedia.org/wiki/Allometry
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Definitions

Isometry versus Allometry:
 Iso-metry = ‘same measure’
 Allo-metry = ‘other measure’

We use allometric scaling to refer to both:

1. Nonlinear scaling of a dependent variable on an
independent one (e.g., 𝑦 ∝ 𝑥1/3)

2. The relative scaling of correlated measures
(e.g., white and gray matter).
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An interesting, earlier treatise on scaling:

McMahon and
Bonner, 1983 [26]



The many scales of life:

p. 2, McMahon and
Bonner [26]



The many scales of life:

p. 3, McMahon and
Bonner [26]
More on the
Elephant Bird
here.

https://en.wikipedia.org/wiki/Aepyornis


The many scales of life:

p.
3, McMahon and
Bonner [26]



The PoCSverse
Scaling
28 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Size range (in grams) and cell differentiation:

10−13 to 108 g, p. 3,

McMahon and Bonner [26]
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Non-uniform growth:

p. 32, McMahon and Bonner [26]
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Non-uniform growth—arm length versus
height:

Good example of a break in scaling:

A crossover in scaling occurs around a height of 1
metre.
p. 32, McMahon and Bonner [26]
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Weightlifting: 𝑀world record ∝ 𝑀 2/3
lifter

Idea: Power ∼ cross-sectional area of isometric lifters.
p. 53, McMahon and Bonner [26]
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We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/� , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of ��d n is almost 1, so the mean
speed is u�d/�����, where the exponent
��1�1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against � in a plot of u against �. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u����, where � has
two different values. These separate abrupt-
ly at a characteristic time, �*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m	d	1,000 m and
50 m	d	200 m for running and swim-
ming, respectively) and long races (1,500
m	d	42,195 m and 400 m	d	1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two � scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents �an and �ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
Sandra Savaglio*, Vincenzo Carbone†
*Space Telescope Science Institute, 3700 San Martin
Drive, Baltimore, Maryland 21218, USA
e-mail: savaglio@stsci.edu
†Dipartimento di Fisica and Istituto Nazionale di
Fisica per la Materia, Unità di Cosenza, Università
della Calabria, I-87036 Rende (CS), Italy
1. Katz, J. S. & Katz, L. J. Sports Sci. 17, 467–476 (1999).

2. Prampero, P. E. Rev. Physiol. Biochem. Pharmacol. 89, 143–222

(1981).

3. Mognoni, P., Lafortuna, C., Russo, G. & Minetti, A. Eur. J. Appl.

Physiol. 49, 287–299 (1982).

4. Kennelly, A. E. Proc. Am. Acad. Arts Sci. 42, 273–331 (1906).

5. Henry, F. M. Res. Q. 26, 147–158 (1955).
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Human performance

Scaling in athletic 
world records

World records in athletics provide a
measure of physical1 as well as phys-
iological human performance2,3.

Here we analyse running records and show
that the mean speed as a function of race
time can be described by two scaling laws
that have a breakpoint at about 150–170
seconds (corresponding to the ~1,000 m
race). We interpret this as being the transi-
tion time between anaerobic and aerobic
energy expenditure by athletes. 

Records measured under standard exter-
nal conditions represent the most reliable
and up-to-date index of human perfor-
mance, and attempts have been made to
model running records since the beginning
of the century1,4,5. It has been suggested1

that the record times, �, and distances, d, of
men’s running can be represented by a 
single power law, ��dn, in races from 100
to 10,000 metres, where n is about 1.1 and
depends on the epoch. This power law
implies that there is an invariance of statis-
tical features of the system over all distances
and there are no evident characteristic
scales as in critical phenomena. 
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Figure 1 Plots of world-record mean speeds against the record time (at November 1999). a,b, Running, and c,d, swimming records: for

men (a,c), we consider 11 races (200 m, 400 m, 800 m, 1,000 m, 1,500 m, the mile, 3,000 m, 5,000 m, 10,000 m, 1 hour, and

marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents � and characteristic times �* of the breakpoints are shown; characteristic times have been determined by using a 
 2

minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 

Men Women

Year �an �ae �* (min) �an �ae �* (min)

1919 0.175�0.011 0.073�0.007 3.52 - - -

1929 0.168�0.007 0.072�0.005 3.87 - - -

1939 0.163�0.014 0.077�0.003 3.91 - - -

1949 0.159�0.013 0.079�0.003 3.45 - - -

1959 0.157�0.012 0.077�0.004 3.33 - - -

1969 0.169�0.012 0.069�0.003 2.96 - - -

1979 0.161�0.008 0.070�0.002 3.22 0.175�0.010 0.079�0.007 3.42

1989 0.158�0.011 0.071�0.002 3.21 0.181�0.014 0.069�0.004 3.03

1999 0.165�0.008 0.072�0.003 2.55 0.175�0.008 0.071�0.004 2.83

Scaling exponents �an and �ae and time at the break, �*, are shown for running records at different epochs (marathons have been included from 1959).

“Scaling in athletic world records”
Savaglio and Carbone,
Nature, 404, 244, 2000. [33]

We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/! , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of !"d n is almost 1, so the mean
speed is u#d/!"!$%, where the exponent
%#1$1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against ! in a plot of u against !. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u"!$%, where % has
two different values. These separate abrupt-
ly at a characteristic time, !*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m&d&1,000 m and
50 m&d&200 m for running and swim-
ming, respectively) and long races (1,500
m&d&42,195 m and 400 m&d&1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two % scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents %an and %ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
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minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 
Men Women

Year %an %ae !* (min) %an %ae !* (min)

1919 0.175(0.011 0.073(0.007 3.52 - - -

1929 0.168(0.007 0.072(0.005 3.87 - - -

1939 0.163(0.014 0.077(0.003 3.91 - - -

1949 0.159(0.013 0.079(0.003 3.45 - - -

1959 0.157(0.012 0.077(0.004 3.33 - - -

1969 0.169(0.012 0.069(0.003 2.96 - - -

1979 0.161(0.008 0.070(0.002 3.22 0.175(0.010 0.079(0.007 3.42

1989 0.158(0.011 0.071(0.002 3.21 0.181(0.014 0.069(0.004 3.03

1999 0.165(0.008 0.072(0.003 2.55 0.175(0.008 0.071(0.004 2.83

Scaling exponents %an and %ae and time at the break, !*, are shown for running records at different epochs (marathons have been included from 1959).

 Eek: Small scaling
regimes

 Mean speed ⟨𝑠⟩ decays
with race time 𝜏 :

⟨𝑠⟩ ∼ 𝜏−𝛽

 Break in scaling at around
𝜏 ≃ 150–170 seconds

 Anaerobic–aerobic
transition

 Roughly 1 km running
race

 Running decays faster
than swimming

https://pdodds.w3.uvm.edu//research/papers/others/everything/savaglio2000a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/savaglio2000a.pdf


The PoCSverse
Scaling
32 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/� , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of ��d n is almost 1, so the mean
speed is u�d/�����, where the exponent
��1�1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against � in a plot of u against �. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u����, where � has
two different values. These separate abrupt-
ly at a characteristic time, �*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m	d	1,000 m and
50 m	d	200 m for running and swim-
ming, respectively) and long races (1,500
m	d	42,195 m and 400 m	d	1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two � scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents �an and �ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
Sandra Savaglio*, Vincenzo Carbone†
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measure of physical1 as well as phys-
iological human performance2,3.

Here we analyse running records and show
that the mean speed as a function of race
time can be described by two scaling laws
that have a breakpoint at about 150–170
seconds (corresponding to the ~1,000 m
race). We interpret this as being the transi-
tion time between anaerobic and aerobic
energy expenditure by athletes. 

Records measured under standard exter-
nal conditions represent the most reliable
and up-to-date index of human perfor-
mance, and attempts have been made to
model running records since the beginning
of the century1,4,5. It has been suggested1

that the record times, �, and distances, d, of
men’s running can be represented by a 
single power law, ��dn, in races from 100
to 10,000 metres, where n is about 1.1 and
depends on the epoch. This power law
implies that there is an invariance of statis-
tical features of the system over all distances
and there are no evident characteristic
scales as in critical phenomena. 
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Figure 1 Plots of world-record mean speeds against the record time (at November 1999). a,b, Running, and c,d, swimming records: for

men (a,c), we consider 11 races (200 m, 400 m, 800 m, 1,000 m, 1,500 m, the mile, 3,000 m, 5,000 m, 10,000 m, 1 hour, and

marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents � and characteristic times �* of the breakpoints are shown; characteristic times have been determined by using a 
 2

minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 

Men Women

Year �an �ae �* (min) �an �ae �* (min)

1919 0.175�0.011 0.073�0.007 3.52 - - -

1929 0.168�0.007 0.072�0.005 3.87 - - -

1939 0.163�0.014 0.077�0.003 3.91 - - -

1949 0.159�0.013 0.079�0.003 3.45 - - -

1959 0.157�0.012 0.077�0.004 3.33 - - -

1969 0.169�0.012 0.069�0.003 2.96 - - -

1979 0.161�0.008 0.070�0.002 3.22 0.175�0.010 0.079�0.007 3.42

1989 0.158�0.011 0.071�0.002 3.21 0.181�0.014 0.069�0.004 3.03

1999 0.165�0.008 0.072�0.003 2.55 0.175�0.008 0.071�0.004 2.83

Scaling exponents �an and �ae and time at the break, �*, are shown for running records at different epochs (marathons have been included from 1959).

“Scaling in athletic world records”
Savaglio and Carbone,
Nature, 404, 244, 2000. [33]

We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/! , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of !"d n is almost 1, so the mean
speed is u#d/!"!$%, where the exponent
%#1$1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against ! in a plot of u against !. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u"!$%, where % has
two different values. These separate abrupt-
ly at a characteristic time, !*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m&d&1,000 m and
50 m&d&200 m for running and swim-
ming, respectively) and long races (1,500
m&d&42,195 m and 400 m&d&1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two % scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents %an and %ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
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measure of physical1 as well as phys-
iological human performance2,3.

Here we analyse running records and show
that the mean speed as a function of race
time can be described by two scaling laws
that have a breakpoint at about 150–170
seconds (corresponding to the ~1,000 m
race). We interpret this as being the transi-
tion time between anaerobic and aerobic
energy expenditure by athletes. 

Records measured under standard exter-
nal conditions represent the most reliable
and up-to-date index of human perfor-
mance, and attempts have been made to
model running records since the beginning
of the century1,4,5. It has been suggested1

that the record times, !, and distances, d, of
men’s running can be represented by a 
single power law, !"dn, in races from 100
to 10,000 metres, where n is about 1.1 and
depends on the epoch. This power law
implies that there is an invariance of statis-
tical features of the system over all distances
and there are no evident characteristic
scales as in critical phenomena. 
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Figure 1 Plots of world-record mean speeds against the record time (at November 1999). a,b, Running, and c,d, swimming records: for

men (a,c), we consider 11 races (200 m, 400 m, 800 m, 1,000 m, 1,500 m, the mile, 3,000 m, 5,000 m, 10,000 m, 1 hour, and

marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents % and characteristic times !* of the breakpoints are shown; characteristic times have been determined by using a ' 2

minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 
Men Women

Year %an %ae !* (min) %an %ae !* (min)

1919 0.175(0.011 0.073(0.007 3.52 - - -

1929 0.168(0.007 0.072(0.005 3.87 - - -

1939 0.163(0.014 0.077(0.003 3.91 - - -

1949 0.159(0.013 0.079(0.003 3.45 - - -

1959 0.157(0.012 0.077(0.004 3.33 - - -

1969 0.169(0.012 0.069(0.003 2.96 - - -

1979 0.161(0.008 0.070(0.002 3.22 0.175(0.010 0.079(0.007 3.42

1989 0.158(0.011 0.071(0.002 3.21 0.181(0.014 0.069(0.004 3.03

1999 0.165(0.008 0.072(0.003 2.55 0.175(0.008 0.071(0.004 2.83

Scaling exponents %an and %ae and time at the break, !*, are shown for running records at different epochs (marathons have been included from 1959).

 Eek: Small scaling
regimes

 Mean speed ⟨𝑠⟩ decays
with race time 𝜏 :

⟨𝑠⟩ ∼ 𝜏−𝛽

 Break in scaling at around
𝜏 ≃ 150–170 seconds

 Anaerobic–aerobic
transition

 Roughly 1 km running
race

 Running decays faster
than swimming
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We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/� , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of ��d n is almost 1, so the mean
speed is u�d/�����, where the exponent
��1�1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against � in a plot of u against �. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u����, where � has
two different values. These separate abrupt-
ly at a characteristic time, �*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m	d	1,000 m and
50 m	d	200 m for running and swim-
ming, respectively) and long races (1,500
m	d	42,195 m and 400 m	d	1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two � scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents �an and �ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
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that have a breakpoint at about 150–170
seconds (corresponding to the ~1,000 m
race). We interpret this as being the transi-
tion time between anaerobic and aerobic
energy expenditure by athletes. 

Records measured under standard exter-
nal conditions represent the most reliable
and up-to-date index of human perfor-
mance, and attempts have been made to
model running records since the beginning
of the century1,4,5. It has been suggested1

that the record times, �, and distances, d, of
men’s running can be represented by a 
single power law, ��dn, in races from 100
to 10,000 metres, where n is about 1.1 and
depends on the epoch. This power law
implies that there is an invariance of statis-
tical features of the system over all distances
and there are no evident characteristic
scales as in critical phenomena. 
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Figure 1 Plots of world-record mean speeds against the record time (at November 1999). a,b, Running, and c,d, swimming records: for

men (a,c), we consider 11 races (200 m, 400 m, 800 m, 1,000 m, 1,500 m, the mile, 3,000 m, 5,000 m, 10,000 m, 1 hour, and

marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents � and characteristic times �* of the breakpoints are shown; characteristic times have been determined by using a 
 2

minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 

Men Women

Year �an �ae �* (min) �an �ae �* (min)

1919 0.175�0.011 0.073�0.007 3.52 - - -

1929 0.168�0.007 0.072�0.005 3.87 - - -

1939 0.163�0.014 0.077�0.003 3.91 - - -

1949 0.159�0.013 0.079�0.003 3.45 - - -

1959 0.157�0.012 0.077�0.004 3.33 - - -

1969 0.169�0.012 0.069�0.003 2.96 - - -

1979 0.161�0.008 0.070�0.002 3.22 0.175�0.010 0.079�0.007 3.42

1989 0.158�0.011 0.071�0.002 3.21 0.181�0.014 0.069�0.004 3.03

1999 0.165�0.008 0.072�0.003 2.55 0.175�0.008 0.071�0.004 2.83

Scaling exponents �an and �ae and time at the break, �*, are shown for running records at different epochs (marathons have been included from 1959).
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We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/! , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of !"d n is almost 1, so the mean
speed is u#d/!"!$%, where the exponent
%#1$1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against ! in a plot of u against !. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u"!$%, where % has
two different values. These separate abrupt-
ly at a characteristic time, !*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m&d&1,000 m and
50 m&d&200 m for running and swim-
ming, respectively) and long races (1,500
m&d&42,195 m and 400 m&d&1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two % scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents %an and %ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
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and up-to-date index of human perfor-
mance, and attempts have been made to
model running records since the beginning
of the century1,4,5. It has been suggested1

that the record times, !, and distances, d, of
men’s running can be represented by a 
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Figure 1 Plots of world-record mean speeds against the record time (at November 1999). a,b, Running, and c,d, swimming records: for

men (a,c), we consider 11 races (200 m, 400 m, 800 m, 1,000 m, 1,500 m, the mile, 3,000 m, 5,000 m, 10,000 m, 1 hour, and

marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents % and characteristic times !* of the breakpoints are shown; characteristic times have been determined by using a ' 2

minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 
Men Women

Year %an %ae !* (min) %an %ae !* (min)

1919 0.175(0.011 0.073(0.007 3.52 - - -

1929 0.168(0.007 0.072(0.005 3.87 - - -

1939 0.163(0.014 0.077(0.003 3.91 - - -

1949 0.159(0.013 0.079(0.003 3.45 - - -

1959 0.157(0.012 0.077(0.004 3.33 - - -

1969 0.169(0.012 0.069(0.003 2.96 - - -

1979 0.161(0.008 0.070(0.002 3.22 0.175(0.010 0.079(0.007 3.42

1989 0.158(0.011 0.071(0.002 3.21 0.181(0.014 0.069(0.004 3.03

1999 0.165(0.008 0.072(0.003 2.55 0.175(0.008 0.071(0.004 2.83

Scaling exponents %an and %ae and time at the break, !*, are shown for running records at different epochs (marathons have been included from 1959).

 Eek: Small scaling
regimes

 Mean speed ⟨𝑠⟩ decays
with race time 𝜏 :
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We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/� , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of ��d n is almost 1, so the mean
speed is u�d/�����, where the exponent
��1�1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against � in a plot of u against �. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u����, where � has
two different values. These separate abrupt-
ly at a characteristic time, �*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m	d	1,000 m and
50 m	d	200 m for running and swim-
ming, respectively) and long races (1,500
m	d	42,195 m and 400 m	d	1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two � scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents �an and �ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
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race). We interpret this as being the transi-
tion time between anaerobic and aerobic
energy expenditure by athletes. 

Records measured under standard exter-
nal conditions represent the most reliable
and up-to-date index of human perfor-
mance, and attempts have been made to
model running records since the beginning
of the century1,4,5. It has been suggested1

that the record times, �, and distances, d, of
men’s running can be represented by a 
single power law, ��dn, in races from 100
to 10,000 metres, where n is about 1.1 and
depends on the epoch. This power law
implies that there is an invariance of statis-
tical features of the system over all distances
and there are no evident characteristic
scales as in critical phenomena. 
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Figure 1 Plots of world-record mean speeds against the record time (at November 1999). a,b, Running, and c,d, swimming records: for

men (a,c), we consider 11 races (200 m, 400 m, 800 m, 1,000 m, 1,500 m, the mile, 3,000 m, 5,000 m, 10,000 m, 1 hour, and

marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents � and characteristic times �* of the breakpoints are shown; characteristic times have been determined by using a 
 2

minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 

Men Women

Year �an �ae �* (min) �an �ae �* (min)

1919 0.175�0.011 0.073�0.007 3.52 - - -

1929 0.168�0.007 0.072�0.005 3.87 - - -

1939 0.163�0.014 0.077�0.003 3.91 - - -

1949 0.159�0.013 0.079�0.003 3.45 - - -

1959 0.157�0.012 0.077�0.004 3.33 - - -

1969 0.169�0.012 0.069�0.003 2.96 - - -

1979 0.161�0.008 0.070�0.002 3.22 0.175�0.010 0.079�0.007 3.42

1989 0.158�0.011 0.071�0.002 3.21 0.181�0.014 0.069�0.004 3.03

1999 0.165�0.008 0.072�0.003 2.55 0.175�0.008 0.071�0.004 2.83

Scaling exponents �an and �ae and time at the break, �*, are shown for running records at different epochs (marathons have been included from 1959).
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We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/! , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of !"d n is almost 1, so the mean
speed is u#d/!"!$%, where the exponent
%#1$1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against ! in a plot of u against !. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u"!$%, where % has
two different values. These separate abrupt-
ly at a characteristic time, !*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m&d&1,000 m and
50 m&d&200 m for running and swim-
ming, respectively) and long races (1,500
m&d&42,195 m and 400 m&d&1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two % scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents %an and %ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
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marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents % and characteristic times !* of the breakpoints are shown; characteristic times have been determined by using a ' 2

minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 
Men Women

Year %an %ae !* (min) %an %ae !* (min)

1919 0.175(0.011 0.073(0.007 3.52 - - -

1929 0.168(0.007 0.072(0.005 3.87 - - -

1939 0.163(0.014 0.077(0.003 3.91 - - -

1949 0.159(0.013 0.079(0.003 3.45 - - -

1959 0.157(0.012 0.077(0.004 3.33 - - -

1969 0.169(0.012 0.069(0.003 2.96 - - -

1979 0.161(0.008 0.070(0.002 3.22 0.175(0.010 0.079(0.007 3.42

1989 0.158(0.011 0.071(0.002 3.21 0.181(0.014 0.069(0.004 3.03

1999 0.165(0.008 0.072(0.003 2.55 0.175(0.008 0.071(0.004 2.83

Scaling exponents %an and %ae and time at the break, !*, are shown for running records at different epochs (marathons have been included from 1959).

 Eek: Small scaling
regimes

 Mean speed ⟨𝑠⟩ decays
with race time 𝜏 :

⟨𝑠⟩ ∼ 𝜏−𝛽

 Break in scaling at around
𝜏 ≃ 150–170 seconds

 Anaerobic–aerobic
transition

 Roughly 1 km running
race

 Running decays faster
than swimming
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We find, however, that both running and
swimming can be characterized by two dis-
tinct critical phenomena when the record
mean speed, u, which is equal to d/� , is
considered. Unlike d, which is set, u relates
to an athlete’s energy expenditure. The
exponent of ��d n is almost 1, so the mean
speed is u�d/�����, where the exponent
��1�1/n. The fact that n is slightly larger
than 1 amplifies every small deviation in the
plot of d against � in a plot of u against �. 

Using record data for swimming and
running for men and women, we find that
there are two regimes described by two scal-
ing laws of the kind u����, where � has
two different values. These separate abrupt-
ly at a characteristic time, �*, which lies in

the range 2.2–2.8 min (Fig. 1) that sepa-
rates short races (200 m	d	1,000 m and
50 m	d	200 m for running and swim-
ming, respectively) and long races (1,500
m	d	42,195 m and 400 m	d	1,500 m
for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
sports.

The transition between the two � scal-
ing exponents corresponds to the switch
from the anaerobic metabolism that is
needed for short sprints to the aerobic
metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents �an and �ae (for anaerobic
and aerobic, respectively) for men and
women in athletics at different epochs. This
transition is consistently evident since ath-
letics records began.

The slopes of the two scaling laws can be
used as a test to compare how evolved and
how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
longer races, in the sense that the dissipated
power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
that women are better than men in long-
distance races is not confirmed by our
analysis. In swimming, small differences
probably result from a difference in buoy-
ancy, which helps women’s swimming per-
formance. The slopes are significantly
steeper for running than for swimming,
perhaps because swimming demands a
small aerobic contribution for short races. 
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and up-to-date index of human perfor-
mance, and attempts have been made to
model running records since the beginning
of the century1,4,5. It has been suggested1

that the record times, �, and distances, d, of
men’s running can be represented by a 
single power law, ��dn, in races from 100
to 10,000 metres, where n is about 1.1 and
depends on the epoch. This power law
implies that there is an invariance of statis-
tical features of the system over all distances
and there are no evident characteristic
scales as in critical phenomena. 
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men (a,c), we consider 11 races (200 m, 400 m, 800 m, 1,000 m, 1,500 m, the mile, 3,000 m, 5,000 m, 10,000 m, 1 hour, and

marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 

exponents � and characteristic times �* of the breakpoints are shown; characteristic times have been determined by using a 
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minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.

Table 1 Scaling exponents and break-time for world running records 

Men Women

Year �an �ae �* (min) �an �ae �* (min)

1919 0.175�0.011 0.073�0.007 3.52 - - -

1929 0.168�0.007 0.072�0.005 3.87 - - -
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1989 0.158�0.011 0.071�0.002 3.21 0.181�0.014 0.069�0.004 3.03

1999 0.165�0.008 0.072�0.003 2.55 0.175�0.008 0.071�0.004 2.83

Scaling exponents �an and �ae and time at the break, �*, are shown for running records at different epochs (marathons have been included from 1959).
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%#1$1/n. The fact that n is slightly larger
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for running and swimming, respectively).
Two different critical phenomena (and no
more) simultaneously coexist in speed
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from the anaerobic metabolism that is
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metabolism used to supply energy for long-
distance races. Table 1 shows values for the
two exponents %an and %ae (for anaerobic
and aerobic, respectively) for men and
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how close to the limit performances are for
athletes of different countries of origin, age
or sex, for example. The smaller the scaling
exponents, the better the performance in
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power will decrease more slowly. In run-
ning, men and women show comparable
efficiency (their exponents are the same
within error): the commonly held belief
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marathon); the same races are considered for women (b,d), apart from the 1 hour race. Lines represent the best fits. The scaling 
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minimization on a broken power law. Triangles in a,b represent the 100 m race, which is excluded from the analysis because the mean

speed is strongly affected by the standing start of athletes.
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1919 0.175(0.011 0.073(0.007 3.52 - - -

1929 0.168(0.007 0.072(0.005 3.87 - - -

1939 0.163(0.014 0.077(0.003 3.91 - - -

1949 0.159(0.013 0.079(0.003 3.45 - - -

1959 0.157(0.012 0.077(0.004 3.33 - - -

1969 0.169(0.012 0.069(0.003 2.96 - - -

1979 0.161(0.008 0.070(0.002 3.22 0.175(0.010 0.079(0.007 3.42

1989 0.158(0.011 0.071(0.002 3.21 0.181(0.014 0.069(0.004 3.03

1999 0.165(0.008 0.072(0.003 2.55 0.175(0.008 0.071(0.004 2.83

Scaling exponents %an and %ae and time at the break, !*, are shown for running records at different epochs (marathons have been included from 1959).
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Lung cancer

Intragenic ERBB2 kinase
mutations in tumours

The protein-kinase family is the most
frequently mutated gene family found
in human cancer and faulty kinase

enzymes are being investigated as promising
targets for the design of antitumour thera-
pies. We have sequenced the gene encoding
the transmembrane protein tyrosine kinase
ERBB2 (also known as HER2 or Neu) from
120 primary lung tumours and identified
4% that have mutations within the kinase
domain; in the adenocarcinoma subtype of
lung cancer, 10% of cases had mutations.
ERBB2 inhibitors, which have so far proved
to be ineffective in treating lung cancer,
should now be clinically re-evaluated in the
specific subset of patients with lung cancer
whose tumours carry ERBB2 mutations.

The successful treatment of chronic
myelogenous leukaemia with a drug (known
as imatinib, marketed as Gleevec) that
inhibits a mutant protein kinase has fostered
interest in the development of other kinase
inhibitors1. Gefitinib, an inhibitor of the 
epidermal growth-factor receptor (EGFR),
induces a marked response in a small subset
of lung cancers; activating mutations have
been found in the EGFR gene in tumours
that respond to gefitinib but are rare in those
that do not respond2,3. The response to gefi-
tinib as a treatment for lung cancer therefore
seems to be predicated upon the presence of
an EGFR mutation in the tumour.

Momentous sprint at the 2156 Olympics?
Women sprinters are closing the gap on men and may one day overtake them.
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Figure 1 The winning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regres-

sion lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and

women, respectively) and 95% confidence intervals (dotted black lines) based on the available points are superimposed. The projections inter-

sect just before the 2156 Olympics, when the winning women’s 100-metre sprint time of 8.079 s will be faster than the men’s at 8.098 s.

The 2004 Olympic women’s 100-metre
sprint champion, Yuliya Nesterenko, is
assured of fame and fortune. But we

show here that — if current trends continue
— it is the winner of the event in the 2156
Olympics whose name will be etched in
sporting history forever, because this may
be the first occasion on which the race is
won in a faster time than the men’s event.

The Athens Olympic Games could be
viewed as another giant experiment in
human athletic achievement. Are women
narrowing the gap with men, or falling 
further behind? Some argue that the gains
made by women in running events between
the 1930s and the 1980s are decreasing as the
women’s achievements plateau1.Others con-
tend that there is no evidence that athletes,
male or female, are reaching the limits of
their potential1,2.

In a limited test,we plot the winning times
of the men’s and women’s Olympic finals over
the past 100 years (ref. 3; for data set, see sup-
plementary information) against the compe-
tition date (Fig. 1). A range of curve-fitting
procedures were tested (for methods,see sup-
plementary information), but there was no
evidence that the addition of extra para-
meters improved the model fit significantly
from the simple linear relationships shown
here. The remarkably strong linear trends
that were first highlighted over ten years ago2

persist for the Olympic 100-metre sprints.
There is no indication that a plateau has been
reached by either male or female athletes in
the Olympic 100-metre sprint record.

Extrapolation of these trends to the 2008
Olympiad indicates that the women’s 100-
metre race could be won in a time of
10.57�0.232 seconds and the men’s event in
9.73�0.144 seconds. Should these trends
continue, the projections will intersect at the
2156 Olympics, when — for the first time
ever — the winning women’s 100-metre
sprint time of 8.079 seconds will be lower
than that of the men’s winning time of 8.098
seconds (Fig. 1). The 95% confidence inter-
vals, estimated through Markov chain Monte
Carlo simulation4 (see supplementary infor-
mation), indicate that this could occur as
early as the 2064 or as late as the 2788 Games.

This simple analysis overlooks numerous
confounding influences, such as timing 
accuracy,environmental variations,national
boycotts and the use of legal and illegal stim-
ulants. But it is also defended by the limited
amount of variance that remains unex-
plained by these linear relationships.

So will these trends continue and can
women really close the gap on men? Those
who contend that the gender gap is widening

say that drug use explains why women’s
times were improving faster than men’s,
particularly as that improvement slowed
after the introduction of drug testing1.How-
ever, no evidence for this is found here. By
contrast, those who maintain that there
could be a continuing decrease in gender
gap point out that only a minority of the
world’s female population has been given
the opportunity to compete (O. Anderson,
www.pponline.co.uk/encyc/0151.htm).

Whether these trends will continue at the
Beijing Olympics in 2008 remains to be seen.
Sports, biological and medical sciences
should enable athletes to continue to
improve on Olympic and world records, by
fair means or foul5. But only time will tell
whether in the 66th Olympiad the fastest
human on the planet will be female.
Andrew J. Tatem*, Carlos A. Guerra*, Peter
M. Atkinson†, Simon I. Hay*‡
*TALA Research Group, Department of Zoology,
University of Oxford, Oxford OX1 3PS, UK
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“Athletics: Momentous sprint at the 2156
Olympics?”
Tatem et al.,
Nature, 431, 525–525, 2004. [35]

Linear extrapolation for the 100 metres:
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Lung cancer

Intragenic ERBB2 kinase
mutations in tumours

The protein-kinase family is the most
frequently mutated gene family found
in human cancer and faulty kinase

enzymes are being investigated as promising
targets for the design of antitumour thera-
pies. We have sequenced the gene encoding
the transmembrane protein tyrosine kinase
ERBB2 (also known as HER2 or Neu) from
120 primary lung tumours and identified
4% that have mutations within the kinase
domain; in the adenocarcinoma subtype of
lung cancer, 10% of cases had mutations.
ERBB2 inhibitors, which have so far proved
to be ineffective in treating lung cancer,
should now be clinically re-evaluated in the
specific subset of patients with lung cancer
whose tumours carry ERBB2 mutations.

The successful treatment of chronic
myelogenous leukaemia with a drug (known
as imatinib, marketed as Gleevec) that
inhibits a mutant protein kinase has fostered
interest in the development of other kinase
inhibitors1. Gefitinib, an inhibitor of the 
epidermal growth-factor receptor (EGFR),
induces a marked response in a small subset
of lung cancers; activating mutations have
been found in the EGFR gene in tumours
that respond to gefitinib but are rare in those
that do not respond2,3. The response to gefi-
tinib as a treatment for lung cancer therefore
seems to be predicated upon the presence of
an EGFR mutation in the tumour.

Momentous sprint at the 2156 Olympics?
Women sprinters are closing the gap on men and may one day overtake them.
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sect just before the 2156 Olympics, when the winning women’s 100-metre sprint time of 8.079 s will be faster than the men’s at 8.098 s.
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tition date (Fig. 1). A range of curve-fitting
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plementary information), but there was no
evidence that the addition of extra para-
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from the simple linear relationships shown
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that were first highlighted over ten years ago2
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There is no indication that a plateau has been
reached by either male or female athletes in
the Olympic 100-metre sprint record.

Extrapolation of these trends to the 2008
Olympiad indicates that the women’s 100-
metre race could be won in a time of
10.57!0.232 seconds and the men’s event in
9.73!0.144 seconds. Should these trends
continue, the projections will intersect at the
2156 Olympics, when — for the first time
ever — the winning women’s 100-metre
sprint time of 8.079 seconds will be lower
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mation), indicate that this could occur as
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ulants. But it is also defended by the limited
amount of variance that remains unex-
plained by these linear relationships.
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who contend that the gender gap is widening

say that drug use explains why women’s
times were improving faster than men’s,
particularly as that improvement slowed
after the introduction of drug testing1.How-
ever, no evidence for this is found here. By
contrast, those who maintain that there
could be a continuing decrease in gender
gap point out that only a minority of the
world’s female population has been given
the opportunity to compete (O. Anderson,
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Tatem: “If I’m wrong anyone is welcome to come and question me about
the result after the 2156 Olympics.”

https://pdodds.w3.uvm.edu//research/papers/others/everything/tatem2004a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/tatem2004a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/tatem2004a.pdf
http://www.nature.com/news/2004/040927/full/news040927-9.html
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Titanothere horns: 𝐿horn ∼ 𝐿skull4

p. 36, McMahon and Bonner [26]; a bit dubious.
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Stories—The Fraction Assassin:2

1*bonk bonk*
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Animal power

Fundamental biological and ecological constraint:

𝑃 = 𝑐 𝑀 𝛼

𝑃 = basal metabolic rate

𝑀 = organismal body mass
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𝑃 = basal metabolic rate
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𝑃 = 𝑐 𝑀 𝛼

Prefactor 𝑐 depends on body plan and body
temperature:
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𝑃 = 𝑐 𝑀 𝛼

Prefactor 𝑐 depends on body plan and body
temperature:

Birds 39–41 ∘𝐶
Eutherian Mammals 36–38 ∘𝐶

Marsupials 34–36 ∘𝐶
Monotremes 30–31 ∘𝐶
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What one might expect:

𝛼 = 2/3

because …
 Dimensional analysis suggests

an energy balance surface law:

𝑃 ∝ 𝑆 ∝ 𝑉 2/3 ∝ 𝑀 2/3

 Assumes isometric scaling (not quite the spherical
cow).

 Lognormal fluctuations:
Gaussian fluctuations in log𝑃 around log𝑐𝑀𝛼.

 Stefan-Boltzmann law for radiated energy:

d𝐸
d𝑡 = 𝜎𝜀𝑆𝑇 4 ∝ 𝑆

http://en.wikipedia.org/wiki/Stefan-Boltzmann_law
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The prevailing belief of the Church of
Quarterology:

𝛼 = 3/4

𝑃 ∝ 𝑀 3/4

Huh?
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The prevailing belief of the Church of
Quarterology:

𝛼 = 3/4

𝑃 ∝ 𝑀 3/4

Huh?
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The prevailing belief of the Church of
Quarterology:

Most obvious concern:

3/4 − 2/3 = 1/12

 An exponent higher than 2/3 points suggests a
fundamental inefficiency in biology.

 Organisms must somehow be running ‘hotter’
than they need to balance heat loss.
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The prevailing belief of the Church of
Quarterology:

Most obvious concern:

3/4 − 2/3 = 1/12

 An exponent higher than 2/3 points suggests a
fundamental inefficiency in biology.

 Organisms must somehow be running ‘hotter’
than they need to balance heat loss.



The PoCSverse
Scaling
41 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Related putative scalings:

Wait! There’s more!:
 number of capillaries ∝ 𝑀 3/4

 time to reproductive maturity ∝ 𝑀 1/4

 heart rate ∝ 𝑀 −1/4

 cross-sectional area of aorta ∝ 𝑀 3/4

 population density ∝ 𝑀 −3/4
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The great ‘law’ of heartbeats:

Assuming:
 Average lifespan ∝ 𝑀𝛽

 Average heart rate ∝ 𝑀−𝛽

 Irrelevant but perhaps 𝛽 = 1/4.

Then:

 Average number of heart beats in a lifespan

≃ (Average lifespan) × (Average heart rate)
∝ 𝑀𝛽−𝛽

∝ 𝑀0

 Number of heartbeats per life time is independent
of organism size!

 ≈ 1.5 billion....
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Ecology—Species-area law:

Allegedly (data is messy): [21, 19]

“An equilibrium theory of insular
zoogeography”
MacArthur and Wilson,
Evolution, 17, 373–387, 1963. [21]


𝑁species ∝ 𝐴𝛽

 According to physicists—on islands: 𝛽 ≈ 1/4.
 Also—on continuous land: 𝛽 ≈ 1/8.

http://en.wikipedia.org/wiki/Species-area_curve
https://pdodds.w3.uvm.edu//research/papers/others/everything/macarthur1963a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/macarthur1963a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/macarthur1963a.pdf
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Cancer:
in familial adenomatouspolyposis (FAP) syndrome
patients, yet cancers occur much more commonly
in the large intestine than in the small intestine
of these individuals.
If hereditary and environmental factors cannot

fully explain the differences in organ-specific can-
cer risk,howelse can thesedifferencesbe explained?
Here, we consider a third factor: the stochastic
effects associatedwith the lifetimenumber of stem
cell divisions within each tissue. In cancer epide-
miology, the term “environmental” is generally
used to denote anything not hereditary, and the
stochastic processes involved in the development
and homeostasis of tissues are grouped with ex-
ternal environmental influences in an uninforma-
tive way. We show here that the stochastic effects
of DNA replication can be numerically estimated
and distinguished from external environmental
factors. Moreover, we show that these stochastic
influences are in fact the major contributors to
cancer overall, often more important than either
hereditary or external environmental factors.
That cancer is largely the result of acquired

genetic and epigenetic changes is based on the
somatic mutation theory of cancer (9–13) and
has been solidified by genome-wide analyses
(14–16). The idea that the number of cells in a
tissue and their cumulative number of divisions
may be related to cancer risk, making themmore
vulnerable to carcinogenic factors, has been pro-
posed but is controversial (17–19). Other insight-

ful ideas relating to the nature of the factors
underlying neoplasia are reviewed in (20–22).
The concept underlying the current work is

that many genomic changes occur simply by
chance during DNA replication rather than as a
result of carcinogenic factors. Since the endog-
enous mutation rate of all human cell types ap-
pears to be nearly identical (23, 24), this concept
predicts that there should be a strong, quantitative
correlation between the lifetime number of divi-
sions among a particular class of cells within each
organ (stem cells) and the lifetime risk of cancer
arising in that organ.
To test this prediction, we attempted to iden-

tify tissues in which the number and dynamics
of stem cells have been described. Most cells in
tissues are partially or fully differentiated cells
that are typically short-lived and unlikely to be
able to initiate a tumor. Only the stem cells—
those that can self-renew and are responsible
for the development and maintenance of the tis-
sue's architecture—have this capacity. Stem cells
often make up a small proportion of the total
number of cells in a tissue and, until recently,
their nature, number, and hierarchical division
patterns were not known (25–28). Tissues were
not included in our analysis if the requisite pa-
rameters were not found in the literature or if
their estimation was difficult to derive.
Through an extensive literature search,we iden-

tified 31 tissue types in which stem cells had been

quantitatively assessed (see the supplementary
materials). We then plotted the total number of
stem cell divisions during the average lifetime of
a human on the x axis and the lifetime risk for
cancer of that tissue type on the y axis (Fig. 1)
(table S1). The lifetime risk in the United States
for all included cancer types has been evaluated
in detail, such as in the Surveillance, Epidemiol-
ogy, and End Results (SEER) database (3). The
correlation between these two very different
parameters—number of stem cell divisions and
lifetime risk—was striking, with a highly positive
correlation (Spearman’s rho = 0.81; P < 3.5 × 10−8)
(Fig. 1). Pearson’s linear correlation 0.804 [0.63
to 0.90; 95% confidence interval (CI)] was equiv-
alently significant (P < 5.15 × 10−8). One of the
most impressive features of this correlation was
that it extended across five orders of magnitude,
thereby applying to cancers with enormous differ-
ences in incidence. No other environmental or in-
herited factors are known to be correlated in this
way across tumor types. Moreover, these correla-
tionswere extremely robust; when the parameters
used to construct Fig. 1 were varied over a broad
range of plausible values, the tight correlation re-
mained intact (see the supplementarymaterials).
A linear correlation equal to 0.804 suggests

that 65% (39% to 81%; 95% CI) of the differences
in cancer risk among different tissues can be ex-
plained by the total number of stem cell divisions
in those tissues. Thus, the stochastic effects of
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Fig. 1. The relationship between the number of stem cell divisions in the lifetime of a given tissue and the lifetime risk of cancer in that tissue.
Values are from table S1, the derivation of which is discussed in the supplementary materials.

RESEARCH | REPORTS “Variation in cancer risk among tissues can
be explained by the number of stem cell
divisions”
Tomasetti and Vogelstein,
Science, 347, 78–81, 2015. [36]
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and homeostasis of tissues are grouped with ex-
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Fig. 1. The relationship between the number of stem cell divisions in the lifetime of a given tissue and the lifetime risk of cancer in that tissue.
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Roughly: 𝑝 ∼ 𝑟2/3 where 𝑝 = life time probability and 𝑟
= rate of stem cell replication.
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we wish to estimate the maximum speed, the relevant prop-
erty is not the basal metabolic rate but rather the maximum
metabolic rate. The order of magnitude of this parameter has
been shown to be roughly constant, too, when scaled to the
mass, with the value

bM � 2� 103 W kg�1 (7)

per unit of working tissue.27,30,31

B. Maximum relative speed

If the maximum relative speed Vmax=L only depends on
the parameters q, r, and bM, dimensional analysis can be
used to deduce its scaling. In terms of the three dimensions
½M�, ½L�; ½T�, the density scales as

q / ½M�½L��3: (8)

Since r is a force (/ ½M�½L�½T��2
) per unit cross-section

(/ ½L�2), it scales as

r / ½M�½L��1½T��2; (9)

and since bM is a power (/ ½M�½L�2½T��3
) per unit mass, it

scales as

bM / ½L�2½T��3: (10)

Therefore, since Vmax=L / ½T��1
, we deduce

Vmax=L / bMq=r: (11)

In order to make a quantitative estimate, let us go a step
further than dimensional analysis. First, consider running and
swimming of animals beyond the micro-organism range. At
zero order, both means of locomotion can be considered as a
cyclic process (of frequency f) in which an organism of length
L moves by one “step” of length �L during each cycle, by
contracting muscles. Consider an organism of cross-section S
and length L:

• its mass is M � qSL,
• moving by one step of length �L by applying the force
�rS requires the energy per unit mass w � rSL=M � r=q,

• since f steps per second consume the energy fw per unit
mass, which must be smaller than bM, the maximum step
rate is fmax � bM=w � bMq=r.

The maximum speed equals the step length �L times the
maximum step rate fmax, whence

Vmax=L � fmax � bMq=r: (12)

Substituting Eqs. (1), (2), and (7) into Eq. (12) yields

Vmax=L � 10 s�1; (13)

which is the large-scale relation mentioned in the
Introduction.

Consider now micro-organisms. They move by rotating or
undulating flagella, cilia, or pili, which are operated by mo-
lecular motors as are the muscles of larger organisms, even
though the number of motors is much smaller for micro-
organisms. In this case, it is more enlightening to consider

the microscopic level. During one period of rotation or undu-
lation,23,32 a micro-organism of length L moves along a dis-
tance �L using energy �W0 [given in Eq. (3)] per molecular
motor. With f cycles per second, the power spent is �fW0.
For a motor of size �a0 given in Eq. (4) and mass �qa3

0, the
power cannot exceed the maximum metabolic rate �bMqa3

0.
This yields f � bMqa3

0=W0, whence

Vmax=L � bMqa3
0=W0: (14)

With n motors, both the numerator and the denominator of
Eq. (14) are multiplied by n, which does not change the
result. Since from Eq. (6) r � W0=a3

0, Eq. (14) is equivalent
to Eq. (12).

Hence, both micro-organisms and larger animals should
have a similar maximum relative speed for running and
swimming, given by Eqs. (12)–(13), in agreement with the
data plotted in Fig. 1.

IV. CONCLUDING REMARKS

There are two exceptions to the scaling derived above: fly-
ing species and very large organisms.

Flying is outside the scope of our simplified model
because in that case the muscles essentially govern wing
flapping, and this frequency does not yield the total relative
speed of the organism. In addition, air drag represents the
dominant constraint at large flying speeds.4

Consider now large running and swimming organisms, for
which Vmax=L tends to decrease (Fig. 1), even though the
data do not lie below one order of magnitude of the scaling
(13) except for the largest animal. Several effects become
important at high speeds, such as friction and excess heat
production. However, Fig. 1 suggests a similar trend for run-
ning and swimming, which points to a more fundamental li-
mitation, independent of the surrounding medium.

Let us consider an organism of cross-section S and length
L, as in Sec. III B, and approximate the locomotion as a peri-
odic motion of legs (for running) or tail (for swimming) of
length �L. The maximum frequency is constrained not only
by the power available, as considered in Sec. III B, but also
by the maximum angular acceleration that muscles can pro-
vide. With the torque C � rSL and moment of inertia
I � ML2 � qSL3, the angular acceleration d2h=dt2 � C=I is
constrained by

d2h=dt2 � r=ðqL2Þ: (15)

Integrating Eq. (15) twice yields the order of magnitude of
the time for the appendage to be accelerated up to a fixed
angle h:

t � Lðqh=rÞ1=2: (16)

Setting h � 1 in Eq. (16) yields the frequency f �
1=t � ðr=qÞ1=2=L and therefore the upper limit of the maxi-
mum speed

Vmax � ðr=qÞ1=2: (17)

Hence, the value of Vmax=L in Eq. (12) can only hold for

L � ðr=qÞ1=2=ðbMq=rÞ ¼ ðr=qÞ3=2=bM: (18)
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“How fast do living organisms move:
Maximum speeds from bacteria to
elephants and whales”
Meyer-Vernet and Rospars,
American Journal of Physics, 83, 719–722,
2015. [28]

range goes from mites to the African bush elephant for run-
ning and from micrometer-sized bacteria to whales for swim-
ming. Almost all the data lie in the range 1 < Vmax=L < 100.
This range is remarkably narrow compared to the 1020-fold
variation in body mass and confirms the striking constancy
of the maximum relative speed first noted by Bonner.9 The
human world records for running and swimming are plotted
as asterisks (red and blue, respectively). Both lie in the lower
range of animal running and swimming relative speeds,
respectively, illustrating the low rank of human beings in the
animal world for sprinting and swimming. Nevertheless,
these records still lie within an order of magnitude of the
scaling Vmax=L ¼ 10 s"1.

Figure 1 also suggests that the maximum speed tends to
level-off for large masses,4 a question that we shall discuss
in Sec. IV. We have not plotted flying speeds, which follow
a different scaling law (see Sec. IV).4

III. ESTIMATION OF MAXIMUM SPEED

In order to propose a basic interpretation of the observed
scaling, let us consider the three universal properties of
living species which constrain their maximum speed of loco-
motion: mass density q, applied force per unit cross-
sectional area r, and maximum power per unit mass bM

(maximum metabolic rate).

A. Three ubiquitous properties of living species

First, the mass density of organisms is roughly that of
liquid water, on which life on Earth is based

q ’ 103 kg m"3: (1)

Second, the applied force per unit cross-sectional area of
tissue6,17 is of order of magnitude

r # 2$ 105 Nm"2; (2)

from micro-organisms to the largest animals.18 This is an
example of the rule dating back to Galileo that the strength
of an object is proportional to its cross-section. Here, Eq. (2)
is not the resistance to fracture, the so-called tensile strength,
but the average active tension applied by organisms for their
locomotion. This tension has a similar value for all organ-
isms because it is based on biological molecular motors of

similar basic properties. Biological motors are molecules
converting chemical energy into mechanical energy via a
conformational change in their molecular structure.19 This
3-dimensional structure is held together by non-covalent
bonds, with the typical free energy

W0 # 10 kBT; (3)

which prevents their destruction by thermal agitation, and
their typical size is20

a0 # e2=4p!0W0 # 6 nm; (4)

despite the complexity of electrostatic interactions within
large molecules.21 Basically, a molecular motor uses an
energy #W0 for moving by one “step” via a change in 3-D
structure, so that the “step” length is #a0. The elementary
force is thus

F0 # W0=a0 # 7 pN (5)

over an equivalent cross-section area whose order of magni-
tude is a2

0, so that the force per unit cross-section area is

r # F0=a2
0 # W0=a3

0: (6)

Substituting Eqs. (3) and (4) into Eq. (6) yields Eq. (2).
This order of magnitude holds for muscles of animals,

which are made of filaments containing hundreds of elemen-
tary motors (myosin), as well as for the moving appendages
of micro-organisms.18,22,23

Third, consider the power available. Transport of heat and
nutrients takes place across surfaces, which are expected to
scale as the square of size, and thus to vary with body mass
as M2=3; therefore, the energy consumption rate of living
beings (the so-called “metabolic rate”) per unit mass is
expected to scale as M2=3=M ¼ M"1=3. Reality is more com-
plicated because body shape and structure change with size,
so that different scalings are observed24 with an exponent
closer to "1=4 than to "1=3. After decades-long controver-
sies,25,26 it has been shown, albeit rarely appreciated in the
physics community, that the basal metabolic rate per unit
mass remains roughly constant across life forms.27,28 More
precisely, for the vast majority of organisms it remains
within a 30-fold range,29 which is remarkably narrow com-
pared with the #1020-fold body mass range concerned. Since

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127
swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed
[Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of
various masses are sketched in black (drawings by François Meyer).
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ning and from micrometer-sized bacteria to whales for swim-
ming. Almost all the data lie in the range 1 < Vmax=L < 100.
This range is remarkably narrow compared to the 1020-fold
variation in body mass and confirms the striking constancy
of the maximum relative speed first noted by Bonner.9 The
human world records for running and swimming are plotted
as asterisks (red and blue, respectively). Both lie in the lower
range of animal running and swimming relative speeds,
respectively, illustrating the low rank of human beings in the
animal world for sprinting and swimming. Nevertheless,
these records still lie within an order of magnitude of the
scaling Vmax=L ¼ 10 s"1.

Figure 1 also suggests that the maximum speed tends to
level-off for large masses,4 a question that we shall discuss
in Sec. IV. We have not plotted flying speeds, which follow
a different scaling law (see Sec. IV).4

III. ESTIMATION OF MAXIMUM SPEED

In order to propose a basic interpretation of the observed
scaling, let us consider the three universal properties of
living species which constrain their maximum speed of loco-
motion: mass density q, applied force per unit cross-
sectional area r, and maximum power per unit mass bM

(maximum metabolic rate).

A. Three ubiquitous properties of living species

First, the mass density of organisms is roughly that of
liquid water, on which life on Earth is based

q ’ 103 kg m"3: (1)

Second, the applied force per unit cross-sectional area of
tissue6,17 is of order of magnitude

r # 2$ 105 Nm"2; (2)

from micro-organisms to the largest animals.18 This is an
example of the rule dating back to Galileo that the strength
of an object is proportional to its cross-section. Here, Eq. (2)
is not the resistance to fracture, the so-called tensile strength,
but the average active tension applied by organisms for their
locomotion. This tension has a similar value for all organ-
isms because it is based on biological molecular motors of

similar basic properties. Biological motors are molecules
converting chemical energy into mechanical energy via a
conformational change in their molecular structure.19 This
3-dimensional structure is held together by non-covalent
bonds, with the typical free energy

W0 # 10 kBT; (3)

which prevents their destruction by thermal agitation, and
their typical size is20

a0 # e2=4p!0W0 # 6 nm; (4)

despite the complexity of electrostatic interactions within
large molecules.21 Basically, a molecular motor uses an
energy #W0 for moving by one “step” via a change in 3-D
structure, so that the “step” length is #a0. The elementary
force is thus

F0 # W0=a0 # 7 pN (5)

over an equivalent cross-section area whose order of magni-
tude is a2

0, so that the force per unit cross-section area is

r # F0=a2
0 # W0=a3

0: (6)

Substituting Eqs. (3) and (4) into Eq. (6) yields Eq. (2).
This order of magnitude holds for muscles of animals,

which are made of filaments containing hundreds of elemen-
tary motors (myosin), as well as for the moving appendages
of micro-organisms.18,22,23

Third, consider the power available. Transport of heat and
nutrients takes place across surfaces, which are expected to
scale as the square of size, and thus to vary with body mass
as M2=3; therefore, the energy consumption rate of living
beings (the so-called “metabolic rate”) per unit mass is
expected to scale as M2=3=M ¼ M"1=3. Reality is more com-
plicated because body shape and structure change with size,
so that different scalings are observed24 with an exponent
closer to "1=4 than to "1=3. After decades-long controver-
sies,25,26 it has been shown, albeit rarely appreciated in the
physics community, that the basal metabolic rate per unit
mass remains roughly constant across life forms.27,28 More
precisely, for the vast majority of organisms it remains
within a 30-fold range,29 which is remarkably narrow com-
pared with the #1020-fold body mass range concerned. Since

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127
swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed
[Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of
various masses are sketched in black (drawings by François Meyer).
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Movement is one of the most fundamental processes of life. 
The individual survival of mobile organisms depends 
on their ability to reach resources and mating partners, 

escape predators, and switch between habitat patches or breed-
ing and wintering grounds. By creating and sustaining individual 
home ranges1 and meta-communities2, movement also profoundly 
affects the ability of animals to cope with changes in land use and in 
climate3. Additionally, movement determines encounter rates and 
thus the strength of species interactions4, which is an important 
factor influencing ecosystem stability5. Accordingly, a generalized 
and predictive understanding of animal movement is crucial6,7.

A fundamental constraint on movement is maximum speed. 
The realized movement depends on ecological factors such as land-
scape structure, habitat quality or sociality, but the range within 
which this realized movement occurs meets its upper limit at max-
imum movement speed. Similar to many physiological and eco-
logical parameters, movement speed of animals is often thought to 
follow a power-law relationship with body mass8–10. However, sci-
entists have always struggled with the fact that, in running animals, 
the largest are not the fastest11–14. In nature, the fastest running or 
swimming animals such as cheetahs or marlins are of intermediate 
size, indicating that a hump-shaped pattern may be more realis-
tic. There have been numerous attempts to describe this phenom-
enon11–13,15,16. Although biomechanical and morphological models 
have been tailored to explain this within taxonomic groups14,16–18, a 
general mechanistic model predicting the large-scale pattern (over 
the full body-mass range) across all taxonomic groups and ecosys-
tem types is still lacking. Here, we fill this void with a maximum-
speed model based on the concept that animals are limited in their 
time for maximum acceleration because of restrictions on the 
quickly available energy. Consequently, acceleration time becomes 
the critical factor determining the maximum speed of animals. 
In the following, we first develop the maximum-speed model (in 
equations that are illustrated in the conceptual Fig.  1), test the 
model predictions employing a global database and eventually 
illustrate its applications to advance a more general understanding 
of animal movement.

Results
Model development. Consistent with prior models8,10, we start 
with a power-law scaling of theoretical maximum speed vmax(theor) of 
animals with body mass M:

=v aM (1)b
max(theor)

During acceleration, the speed of an animal over time t  
saturates19–21 (Fig.  1a, solid lines) approaching vmax(theor) (Fig.  1a, 
dotted lines):

= − −v t v( ) (1 e ) (2)kt
max(theor)

The acceleration constant k describes how fast an animal 
reaches vmax(theor). In analogy to Newton’s second law, the accelera-
tion k should scale relative to the ratio between maximum force, 
F, and body mass, M: that is, k ~ F/M. Knowing that maximum 
muscle force roughly scales with body mass as F ~ Md, this yields a 
general power-law scaling of k with body mass M:

= −k cM (3)d 1

with constants c and d. As the allometric exponent d of the muscle 
force falls within the range 0.75 to 0.94 (refs. 14,22,23), the overall 
exponent (d −​ 1) should be negative, implying that larger animals 
need more time to accelerate to the same speed than smaller ones 
(see conceptual Fig.  1a; colour code exemplifies four animals of 
different size). Note that this general scaling relationship also 
allows for the special cases of a constant acceleration across species 
or a linear relationship with body mass.

Whereas prolonged high speeds are related to the maximum 
aerobic metabolism, maximum burst speeds are linked to anaero-
bic capacity24,25. For maximum aerobic speed, ‘slow twitch’ fibres 
are needed, which are highly efficient at using oxygen for gener-
ating adenosine triphosphate (ATP) to fuel muscle contractions. 
Thus, they produce energy more slowly but for a long period of 
time before they become fatigued, and they allow for continuous, 
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from 3 ×  10−8 kg to 108,400 kg. Statistical comparison amongst 
multiple models (see Methods) shows that the time-dependent 
maximum-speed model is the most adequate (see Supplementary 
Table 3). Our model (Fig. 2, parameter values in Supplementary 
Table 4) shows that the initial power-law increase of speed with 
body mass is similar for running and flying animals (b =  0.26 
and 0.24, respectively). However, flying animals are nearly six 
times as fast as running ones (a =  143 and 26, respectively). For 
swimming animals, the power-law increase in speed is steeper 
(b =  0.36, Fig. 2a). This is because water is 800 times as dense and 
60 times as viscous as air30 (in which both flying and running 
animals move). Small aquatic animals are slower than running 
animals of the same body mass, whereas larger species approach 
a similar speed to that of their running equivalents. This implies 
that in water, body mass brings a greater benefit in gaining speed. 
The second exponent is lower for flying animals (i = − 0.72) than 
for running (i =  − 0.6) and swimming ones (i =  − 0.56). Future 
research will need to disentangle the relative importance of 
anaerobic and musculoskeletal constraints on movement speed 
by measuring muscle force, muscle mass, body mass and maxi-
mum acceleration for the same species to narrow down this large 
range of possible exponents. Furthermore, this may allow us to 
address the systematic differences in the exponent i between the 
locomotion modes as well as potential morphological side effects 

(for example quadrupedal versus bipedal running, or soaring ver-
sus flapping flight).

Although the model provides strikingly strong fits with 
observations (R2 =  0.893), some unexplained variation remains. 
This might partially be explained by the fact that our data prob-
ably include not only maximum anaerobic speeds but also some 
slightly slower maximum aerobic speeds. Moreover, we assessed 
the robustness of our model by exploring this residual variation 
with respect to taxonomy (arthropods, birds, fish, mammals, mol-
luscs, reptiles), primary diet (carnivore, herbivore, omnivore), 
thermoregulation (ectotherm, endotherm) and locomotion mode 
(flying, running, swimming). As taxonomy and thermoregulation 
are highly correlated, we made a first model without taxonomy and 
a second model without thermoregulation and compared them by 
their Bayesian information criterion (BIC) values (see Methods 
for details). According to this, the model including thermoregu-
lation instead of taxonomy is the most adequate (∆ BIC =  27.37). 
In this model, the differences between the diet types were not 
significant. In contrast, combinations of locomotion mode with 
thermoregulation exhibited significant differences (Fig. 3). In fly-
ing and running animals, endotherms generally tend to be faster 
than ectotherms (Fig.  3a,b). Metabolic constraints may enable 
endotherms to have higher activity levels than ectotherms at the 
low to intermediate temperatures most commonly encountered 
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from 3 ×  10−8 kg to 108,400 kg. Statistical comparison amongst 
multiple models (see Methods) shows that the time-dependent 
maximum-speed model is the most adequate (see Supplementary 
Table 3). Our model (Fig. 2, parameter values in Supplementary 
Table 4) shows that the initial power-law increase of speed with 
body mass is similar for running and flying animals (b =  0.26 
and 0.24, respectively). However, flying animals are nearly six 
times as fast as running ones (a =  143 and 26, respectively). For 
swimming animals, the power-law increase in speed is steeper 
(b =  0.36, Fig. 2a). This is because water is 800 times as dense and 
60 times as viscous as air30 (in which both flying and running 
animals move). Small aquatic animals are slower than running 
animals of the same body mass, whereas larger species approach 
a similar speed to that of their running equivalents. This implies 
that in water, body mass brings a greater benefit in gaining speed. 
The second exponent is lower for flying animals (i = − 0.72) than 
for running (i =  − 0.6) and swimming ones (i =  − 0.56). Future 
research will need to disentangle the relative importance of 
anaerobic and musculoskeletal constraints on movement speed 
by measuring muscle force, muscle mass, body mass and maxi-
mum acceleration for the same species to narrow down this large 
range of possible exponents. Furthermore, this may allow us to 
address the systematic differences in the exponent i between the 
locomotion modes as well as potential morphological side effects 

(for example quadrupedal versus bipedal running, or soaring ver-
sus flapping flight).

Although the model provides strikingly strong fits with 
observations (R2 =  0.893), some unexplained variation remains. 
This might partially be explained by the fact that our data prob-
ably include not only maximum anaerobic speeds but also some 
slightly slower maximum aerobic speeds. Moreover, we assessed 
the robustness of our model by exploring this residual variation 
with respect to taxonomy (arthropods, birds, fish, mammals, mol-
luscs, reptiles), primary diet (carnivore, herbivore, omnivore), 
thermoregulation (ectotherm, endotherm) and locomotion mode 
(flying, running, swimming). As taxonomy and thermoregulation 
are highly correlated, we made a first model without taxonomy and 
a second model without thermoregulation and compared them by 
their Bayesian information criterion (BIC) values (see Methods 
for details). According to this, the model including thermoregu-
lation instead of taxonomy is the most adequate (∆ BIC =  27.37). 
In this model, the differences between the diet types were not 
significant. In contrast, combinations of locomotion mode with 
thermoregulation exhibited significant differences (Fig. 3). In fly-
ing and running animals, endotherms generally tend to be faster 
than ectotherms (Fig.  3a,b). Metabolic constraints may enable 
endotherms to have higher activity levels than ectotherms at the 
low to intermediate temperatures most commonly encountered 
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Movement is one of the most fundamental processes of life. 
The individual survival of mobile organisms depends 
on their ability to reach resources and mating partners, 

escape predators, and switch between habitat patches or breed-
ing and wintering grounds. By creating and sustaining individual 
home ranges1 and meta-communities2, movement also profoundly 
affects the ability of animals to cope with changes in land use and in 
climate3. Additionally, movement determines encounter rates and 
thus the strength of species interactions4, which is an important 
factor influencing ecosystem stability5. Accordingly, a generalized 
and predictive understanding of animal movement is crucial6,7.

A fundamental constraint on movement is maximum speed. 
The realized movement depends on ecological factors such as land-
scape structure, habitat quality or sociality, but the range within 
which this realized movement occurs meets its upper limit at max-
imum movement speed. Similar to many physiological and eco-
logical parameters, movement speed of animals is often thought to 
follow a power-law relationship with body mass8–10. However, sci-
entists have always struggled with the fact that, in running animals, 
the largest are not the fastest11–14. In nature, the fastest running or 
swimming animals such as cheetahs or marlins are of intermediate 
size, indicating that a hump-shaped pattern may be more realis-
tic. There have been numerous attempts to describe this phenom-
enon11–13,15,16. Although biomechanical and morphological models 
have been tailored to explain this within taxonomic groups14,16–18, a 
general mechanistic model predicting the large-scale pattern (over 
the full body-mass range) across all taxonomic groups and ecosys-
tem types is still lacking. Here, we fill this void with a maximum-
speed model based on the concept that animals are limited in their 
time for maximum acceleration because of restrictions on the 
quickly available energy. Consequently, acceleration time becomes 
the critical factor determining the maximum speed of animals. 
In the following, we first develop the maximum-speed model (in 
equations that are illustrated in the conceptual Fig.  1), test the 
model predictions employing a global database and eventually 
illustrate its applications to advance a more general understanding 
of animal movement.

Results
Model development. Consistent with prior models8,10, we start 
with a power-law scaling of theoretical maximum speed vmax(theor) of 
animals with body mass M:

=v aM (1)b
max(theor)

During acceleration, the speed of an animal over time t  
saturates19–21 (Fig.  1a, solid lines) approaching vmax(theor) (Fig.  1a, 
dotted lines):

= − −v t v( ) (1 e ) (2)kt
max(theor)

The acceleration constant k describes how fast an animal 
reaches vmax(theor). In analogy to Newton’s second law, the accelera-
tion k should scale relative to the ratio between maximum force, 
F, and body mass, M: that is, k ~ F/M. Knowing that maximum 
muscle force roughly scales with body mass as F ~ Md, this yields a 
general power-law scaling of k with body mass M:

= −k cM (3)d 1

with constants c and d. As the allometric exponent d of the muscle 
force falls within the range 0.75 to 0.94 (refs. 14,22,23), the overall 
exponent (d −​ 1) should be negative, implying that larger animals 
need more time to accelerate to the same speed than smaller ones 
(see conceptual Fig.  1a; colour code exemplifies four animals of 
different size). Note that this general scaling relationship also 
allows for the special cases of a constant acceleration across species 
or a linear relationship with body mass.

Whereas prolonged high speeds are related to the maximum 
aerobic metabolism, maximum burst speeds are linked to anaero-
bic capacity24,25. For maximum aerobic speed, ‘slow twitch’ fibres 
are needed, which are highly efficient at using oxygen for gener-
ating adenosine triphosphate (ATP) to fuel muscle contractions. 
Thus, they produce energy more slowly but for a long period of 
time before they become fatigued, and they allow for continuous, 
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extended muscle contractions. In contrast, maximum anaerobic 
speed is fuelled by a special type of ‘fast twitch’ fibres, which use 
ATP from the ATP storage of the fibre until it is depleted. Thus, 
they produce energy more quickly but also become fatigued very 
rapidly and only allow for short bursts of speed. As our maximum-
speed model is based on this maximum anaerobic capacity, the 
critical time τ available for maximum acceleration is limited by 
the amount of fast twitch fibre and their energy storage capacity. 
This storage capacity is correlated with the amount of muscle tissue 
mass, which is directly linked to body mass. Thus, similar to the 
muscle tissue mass, τ should follow a power law:

τ= fM (4)g

where the allometric exponent g should fall in the range 0.76 
to 1.27 documented for the allometric scaling of muscle tissue 
mass26–29. This power law implies that larger animals should have 
more time for acceleration (dashed lines in conceptual Fig. 1b, c). 
However, the power-law relationship of the critical time τ in our 
model allows for a negative or positive scaling of energy availabil-
ity with body mass as well as the lack of a relationship (constant 
energy availability across body masses (f =  0)). Although we have 
included power-law relationships of k and τ (equations (3) and (4)) 
in our model, these scaling assumptions are not strictly necessary. 
Instead, our only critical assumptions are that acceleration over 
time follows a saturation curve (equation (1)) and that the time 
available for anaerobic acceleration is limited.

Within the critical time τ, after which the energy available for 
acceleration is depleted, the animal reaches its realized maximum 

speed vmax (points in Fig. 1c), which may be lower than the theo-
retical maximum speed (Fig. 1a, dotted lines). Combining equa-
tions (1)–(4) with t =  τ yields = − − − +

v aM (1 e )b cfM
max

d g1
 which  

simplifies to

= − −v aM (1 e ) (5)b hM
max

i

where i =  d −  1 +  g and h =  cf. This equation predicts a hump-
shaped relationship between realized maximum speed and body 
mass (conceptual Fig. 1d).

The limiting term − −1 e hMi
 represents the fraction of the  

theoretical maximum speed that is realized and is defined on  
the interval]0;1[. For low body masses, this term is close to  
1 and the realized maximum speed approximates the theoreti-
cal maximum. With increasing body masses, this term decreases  
and reduces the realized maximum speed. Put simply, small 
to intermediately sized animals accelerate quickly and have  
enough time to reach their theoretical maximum speed, whereas 
large animals are limited in acceleration time and run out of 
readily mobilizable energy before being able to reach their 
theoretically possible maximum. Therefore, they have a lower  
realized maximum speed than predicted by a power-law scaling 
relationship.

Test of model predictions by empirical database. To test the 
model predictions (Fig. 1d), we compiled literature data on maxi-
mum speeds of running, flying and swimming animals includ-
ing not only mammals, fish and bird species but also reptiles, 
molluscs and arthropods. Body masses of these species range 
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extended muscle contractions. In contrast, maximum anaerobic 
speed is fuelled by a special type of ‘fast twitch’ fibres, which use 
ATP from the ATP storage of the fibre until it is depleted. Thus, 
they produce energy more quickly but also become fatigued very 
rapidly and only allow for short bursts of speed. As our maximum-
speed model is based on this maximum anaerobic capacity, the 
critical time τ available for maximum acceleration is limited by 
the amount of fast twitch fibre and their energy storage capacity. 
This storage capacity is correlated with the amount of muscle tissue 
mass, which is directly linked to body mass. Thus, similar to the 
muscle tissue mass, τ should follow a power law:

τ= fM (4)g

where the allometric exponent g should fall in the range 0.76 
to 1.27 documented for the allometric scaling of muscle tissue 
mass26–29. This power law implies that larger animals should have 
more time for acceleration (dashed lines in conceptual Fig. 1b, c). 
However, the power-law relationship of the critical time τ in our 
model allows for a negative or positive scaling of energy availabil-
ity with body mass as well as the lack of a relationship (constant 
energy availability across body masses (f =  0)). Although we have 
included power-law relationships of k and τ (equations (3) and (4)) 
in our model, these scaling assumptions are not strictly necessary. 
Instead, our only critical assumptions are that acceleration over 
time follows a saturation curve (equation (1)) and that the time 
available for anaerobic acceleration is limited.

Within the critical time τ, after which the energy available for 
acceleration is depleted, the animal reaches its realized maximum 

speed vmax (points in Fig. 1c), which may be lower than the theo-
retical maximum speed (Fig. 1a, dotted lines). Combining equa-
tions (1)–(4) with t =  τ yields = − − − +

v aM (1 e )b cfM
max

d g1
 which  

simplifies to

= − −v aM (1 e ) (5)b hM
max

i

where i =  d −  1 +  g and h =  cf. This equation predicts a hump-
shaped relationship between realized maximum speed and body 
mass (conceptual Fig. 1d).

The limiting term − −1 e hMi
 represents the fraction of the  

theoretical maximum speed that is realized and is defined on  
the interval]0;1[. For low body masses, this term is close to  
1 and the realized maximum speed approximates the theoreti-
cal maximum. With increasing body masses, this term decreases  
and reduces the realized maximum speed. Put simply, small 
to intermediately sized animals accelerate quickly and have  
enough time to reach their theoretical maximum speed, whereas 
large animals are limited in acceleration time and run out of 
readily mobilizable energy before being able to reach their 
theoretically possible maximum. Therefore, they have a lower  
realized maximum speed than predicted by a power-law scaling 
relationship.

Test of model predictions by empirical database. To test the 
model predictions (Fig. 1d), we compiled literature data on maxi-
mum speeds of running, flying and swimming animals includ-
ing not only mammals, fish and bird species but also reptiles, 
molluscs and arthropods. Body masses of these species range 
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speed are currently lacking, but our model offers a framework to 
include temperature effects formally in future work.

In ecological research, our maximum-speed model provides 
a mechanistic understanding of the upper limit to animal move-
ment patterns during migration, dispersal or bridging habitat 
patches. The travelling speed characterizing these movements 
is the fraction of maximum speed that can be maintained over  
longer periods of time. It would be interesting to analyse how 
travel speed scales with body mass on the large body-mass 
scale and whether it also follows a hump-shaped pattern. If so, 
animals would use an approximately fixed percentage of their  
maximum speed during travel. If, however, travel speed follows 

a power-law relationship with body mass, large and small ani-
mals would use a higher proportion of their maximum speed 
during travel than intermediately sized animals. This would 
also affect different measurements of animal space use as well as 
migration and dispersal distances. Although home ranges1,41 and 
day ranges42 of animals have been shown to follow power-law 
relationships with body mass, migration distances of flying ani-
mals, for example, follow a curvilinear relationship with body 
mass43. Our new results call for mechanistic analyses of how the 
hump-shaped scaling pattern of maximum speed could poten-
tially affect other movement parameters.

The integration of our model as a species-specific scale (“what 
is physiologically possible”) with research on how this fraction 
is modified by species traits and environmental parameters such  
as landscape structure, resource availability and temperature 
(“what is ecologically realized in nature”) could help to provide 
a mechanistic understanding unifying physiological and ecologi-
cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.

Methods
Data. We searched for published literature providing data on the maximum speeds 
of running, flying and swimming animals by using the search terms “maximum 
speed”, “escape speed” and “sprint speed”. From this list, we excluded publications 
on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 

10–9 10–7 10–5 10–3 10–1 101 103 105 107

0.01

0.1

1

10

100

1,000

Sp
ee

d 
(k

m
 h

–1
)

Body mass (kg)

Extant species
Dinosaurs (morphological calculations)
Model prediction (fitted to data from extant species)
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Table 1 | Maximum-speed predictions for extant and extinct flightless birds, and bipedal and quadrupedal dinosaurs

Taxa Body mass (kg) Speed (km h–1)

Power law (95% CI) Morphological  
models

Time-dependent model  
(95% CI)

Flightless birds
Dromaius (extant) 27.2 40.92 (38.58–43.40) 47.88 57.62 (47.65–60.91)
Struthio (extant) 65.3 49.33 (46.27–52.59) 55.44 62.75 (46.71–66.03)
Patagornis (extinct) 45 45.56 (42.83–48.46) 50.40 61.34 (47.39–64.68)
Bipedal dinosaurs
Velociraptor 20 38.32 (36.19–40.58) 38.88 54.56 (46.89–57.82)
Allosaurus 1,400 94.87 (87.09–103.34) 33.84 40.78 (28.93–44.83)
Tyrannosaurus 6,000 129.41 (117.47–142.57) 28.8 27.05 (17.84–31.52)
Quadrupedal dinosaurs
Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)

Brachiosaurus 78,258 223.85 (199.00–251.80) 17.6 11.99 (6.39–16.04)
Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.
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 Maximum speed
increases with size:
𝑣max = 𝑎𝑀𝑏

 Takes a while to get going:
𝑣(𝑡) = 𝑣max(1 − 𝑒−𝑘𝑡)

 𝑘 ∼ 𝐹max/𝑀 ∼ 𝑐𝑀𝑑−1

Literature: 0.75 ≲ 𝑑 ≲ 0.94
 Acceleration time =

depletion time for
anaerobic energy:
𝜏 ∼ 𝑓𝑀𝑔

Literature: 0.76 ≲ 𝑔 ≲ 1.27
 𝑣max = 𝑎𝑀𝑏 (1 − 𝑒−ℎ𝑀𝑖)
 𝑖 = 𝑑 − 1 + 𝑔 and ℎ = 𝑐𝑓

 Literature search for for maximum speeds of running, flying and
swimming animals.

 Search terms: “maximum speed”, “escape speed”, and “sprint speed”.

Note: [28] not cited.



The PoCSverse
Scaling
49 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Theoretical story:

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLESNATURE ECOLOGY & EVOLUTION

speed are currently lacking, but our model offers a framework to 
include temperature effects formally in future work.

In ecological research, our maximum-speed model provides 
a mechanistic understanding of the upper limit to animal move-
ment patterns during migration, dispersal or bridging habitat 
patches. The travelling speed characterizing these movements 
is the fraction of maximum speed that can be maintained over  
longer periods of time. It would be interesting to analyse how 
travel speed scales with body mass on the large body-mass 
scale and whether it also follows a hump-shaped pattern. If so, 
animals would use an approximately fixed percentage of their  
maximum speed during travel. If, however, travel speed follows 

a power-law relationship with body mass, large and small ani-
mals would use a higher proportion of their maximum speed 
during travel than intermediately sized animals. This would 
also affect different measurements of animal space use as well as 
migration and dispersal distances. Although home ranges1,41 and 
day ranges42 of animals have been shown to follow power-law 
relationships with body mass, migration distances of flying ani-
mals, for example, follow a curvilinear relationship with body 
mass43. Our new results call for mechanistic analyses of how the 
hump-shaped scaling pattern of maximum speed could poten-
tially affect other movement parameters.

The integration of our model as a species-specific scale (“what 
is physiologically possible”) with research on how this fraction 
is modified by species traits and environmental parameters such  
as landscape structure, resource availability and temperature 
(“what is ecologically realized in nature”) could help to provide 
a mechanistic understanding unifying physiological and ecologi-
cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.

Methods
Data. We searched for published literature providing data on the maximum speeds 
of running, flying and swimming animals by using the search terms “maximum 
speed”, “escape speed” and “sprint speed”. From this list, we excluded publications 
on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 
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Figure 4 | Predicting the maximum speed of extinct species with the time-
dependent model. The model prediction (grey line) is fitted to data of extant 
species (grey circles) and extended to higher body masses. Speed data 
for dinosaurs (green triangles) come from detailed morphological model 
calculations (values in Table 1) and were not used to obtain model parameters.

Table 1 | Maximum-speed predictions for extant and extinct flightless birds, and bipedal and quadrupedal dinosaurs

Taxa Body mass (kg) Speed (km h–1)

Power law (95% CI) Morphological  
models

Time-dependent model  
(95% CI)

Flightless birds
Dromaius (extant) 27.2 40.92 (38.58–43.40) 47.88 57.62 (47.65–60.91)
Struthio (extant) 65.3 49.33 (46.27–52.59) 55.44 62.75 (46.71–66.03)
Patagornis (extinct) 45 45.56 (42.83–48.46) 50.40 61.34 (47.39–64.68)
Bipedal dinosaurs
Velociraptor 20 38.32 (36.19–40.58) 38.88 54.56 (46.89–57.82)
Allosaurus 1,400 94.87 (87.09–103.34) 33.84 40.78 (28.93–44.83)
Tyrannosaurus 6,000 129.41 (117.47–142.57) 28.8 27.05 (17.84–31.52)
Quadrupedal dinosaurs
Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)

Brachiosaurus 78,258 223.85 (199.00–251.80) 17.6 11.99 (6.39–16.04)
Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.
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 Maximum speed
increases with size:
𝑣max = 𝑎𝑀𝑏

 Takes a while to get going:
𝑣(𝑡) = 𝑣max(1 − 𝑒−𝑘𝑡)

 𝑘 ∼ 𝐹max/𝑀 ∼ 𝑐𝑀𝑑−1

Literature: 0.75 ≲ 𝑑 ≲ 0.94
 Acceleration time =

depletion time for
anaerobic energy:
𝜏 ∼ 𝑓𝑀𝑔

Literature: 0.76 ≲ 𝑔 ≲ 1.27
 𝑣max = 𝑎𝑀𝑏 (1 − 𝑒−ℎ𝑀𝑖)
 𝑖 = 𝑑 − 1 + 𝑔 and ℎ = 𝑐𝑓

 Literature search for for maximum speeds of running, flying and
swimming animals.

 Search terms: “maximum speed”, “escape speed”, and “sprint speed”.

Note: [28] not cited.
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speed are currently lacking, but our model offers a framework to 
include temperature effects formally in future work.

In ecological research, our maximum-speed model provides 
a mechanistic understanding of the upper limit to animal move-
ment patterns during migration, dispersal or bridging habitat 
patches. The travelling speed characterizing these movements 
is the fraction of maximum speed that can be maintained over  
longer periods of time. It would be interesting to analyse how 
travel speed scales with body mass on the large body-mass 
scale and whether it also follows a hump-shaped pattern. If so, 
animals would use an approximately fixed percentage of their  
maximum speed during travel. If, however, travel speed follows 

a power-law relationship with body mass, large and small ani-
mals would use a higher proportion of their maximum speed 
during travel than intermediately sized animals. This would 
also affect different measurements of animal space use as well as 
migration and dispersal distances. Although home ranges1,41 and 
day ranges42 of animals have been shown to follow power-law 
relationships with body mass, migration distances of flying ani-
mals, for example, follow a curvilinear relationship with body 
mass43. Our new results call for mechanistic analyses of how the 
hump-shaped scaling pattern of maximum speed could poten-
tially affect other movement parameters.

The integration of our model as a species-specific scale (“what 
is physiologically possible”) with research on how this fraction 
is modified by species traits and environmental parameters such  
as landscape structure, resource availability and temperature 
(“what is ecologically realized in nature”) could help to provide 
a mechanistic understanding unifying physiological and ecologi-
cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.

Methods
Data. We searched for published literature providing data on the maximum speeds 
of running, flying and swimming animals by using the search terms “maximum 
speed”, “escape speed” and “sprint speed”. From this list, we excluded publications 
on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 

10–9 10–7 10–5 10–3 10–1 101 103 105 107

0.01

0.1

1

10

100

1,000

Sp
ee

d 
(k

m
 h

–1
)

Body mass (kg)

Extant species
Dinosaurs (morphological calculations)
Model prediction (fitted to data from extant species)

Figure 4 | Predicting the maximum speed of extinct species with the time-
dependent model. The model prediction (grey line) is fitted to data of extant 
species (grey circles) and extended to higher body masses. Speed data 
for dinosaurs (green triangles) come from detailed morphological model 
calculations (values in Table 1) and were not used to obtain model parameters.

Table 1 | Maximum-speed predictions for extant and extinct flightless birds, and bipedal and quadrupedal dinosaurs

Taxa Body mass (kg) Speed (km h–1)

Power law (95% CI) Morphological  
models

Time-dependent model  
(95% CI)

Flightless birds
Dromaius (extant) 27.2 40.92 (38.58–43.40) 47.88 57.62 (47.65–60.91)
Struthio (extant) 65.3 49.33 (46.27–52.59) 55.44 62.75 (46.71–66.03)
Patagornis (extinct) 45 45.56 (42.83–48.46) 50.40 61.34 (47.39–64.68)
Bipedal dinosaurs
Velociraptor 20 38.32 (36.19–40.58) 38.88 54.56 (46.89–57.82)
Allosaurus 1,400 94.87 (87.09–103.34) 33.84 40.78 (28.93–44.83)
Tyrannosaurus 6,000 129.41 (117.47–142.57) 28.8 27.05 (17.84–31.52)
Quadrupedal dinosaurs
Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)

Brachiosaurus 78,258 223.85 (199.00–251.80) 17.6 11.99 (6.39–16.04)
Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.
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 Maximum speed
increases with size:
𝑣max = 𝑎𝑀𝑏

 Takes a while to get going:
𝑣(𝑡) = 𝑣max(1 − 𝑒−𝑘𝑡)

 𝑘 ∼ 𝐹max/𝑀 ∼ 𝑐𝑀𝑑−1

Literature: 0.75 ≲ 𝑑 ≲ 0.94

 Acceleration time =
depletion time for
anaerobic energy:
𝜏 ∼ 𝑓𝑀𝑔

Literature: 0.76 ≲ 𝑔 ≲ 1.27
 𝑣max = 𝑎𝑀𝑏 (1 − 𝑒−ℎ𝑀𝑖)
 𝑖 = 𝑑 − 1 + 𝑔 and ℎ = 𝑐𝑓

 Literature search for for maximum speeds of running, flying and
swimming animals.

 Search terms: “maximum speed”, “escape speed”, and “sprint speed”.

Note: [28] not cited.
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speed are currently lacking, but our model offers a framework to 
include temperature effects formally in future work.

In ecological research, our maximum-speed model provides 
a mechanistic understanding of the upper limit to animal move-
ment patterns during migration, dispersal or bridging habitat 
patches. The travelling speed characterizing these movements 
is the fraction of maximum speed that can be maintained over  
longer periods of time. It would be interesting to analyse how 
travel speed scales with body mass on the large body-mass 
scale and whether it also follows a hump-shaped pattern. If so, 
animals would use an approximately fixed percentage of their  
maximum speed during travel. If, however, travel speed follows 

a power-law relationship with body mass, large and small ani-
mals would use a higher proportion of their maximum speed 
during travel than intermediately sized animals. This would 
also affect different measurements of animal space use as well as 
migration and dispersal distances. Although home ranges1,41 and 
day ranges42 of animals have been shown to follow power-law 
relationships with body mass, migration distances of flying ani-
mals, for example, follow a curvilinear relationship with body 
mass43. Our new results call for mechanistic analyses of how the 
hump-shaped scaling pattern of maximum speed could poten-
tially affect other movement parameters.

The integration of our model as a species-specific scale (“what 
is physiologically possible”) with research on how this fraction 
is modified by species traits and environmental parameters such  
as landscape structure, resource availability and temperature 
(“what is ecologically realized in nature”) could help to provide 
a mechanistic understanding unifying physiological and ecologi-
cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.

Methods
Data. We searched for published literature providing data on the maximum speeds 
of running, flying and swimming animals by using the search terms “maximum 
speed”, “escape speed” and “sprint speed”. From this list, we excluded publications 
on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 
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Figure 4 | Predicting the maximum speed of extinct species with the time-
dependent model. The model prediction (grey line) is fitted to data of extant 
species (grey circles) and extended to higher body masses. Speed data 
for dinosaurs (green triangles) come from detailed morphological model 
calculations (values in Table 1) and were not used to obtain model parameters.

Table 1 | Maximum-speed predictions for extant and extinct flightless birds, and bipedal and quadrupedal dinosaurs

Taxa Body mass (kg) Speed (km h–1)

Power law (95% CI) Morphological  
models

Time-dependent model  
(95% CI)

Flightless birds
Dromaius (extant) 27.2 40.92 (38.58–43.40) 47.88 57.62 (47.65–60.91)
Struthio (extant) 65.3 49.33 (46.27–52.59) 55.44 62.75 (46.71–66.03)
Patagornis (extinct) 45 45.56 (42.83–48.46) 50.40 61.34 (47.39–64.68)
Bipedal dinosaurs
Velociraptor 20 38.32 (36.19–40.58) 38.88 54.56 (46.89–57.82)
Allosaurus 1,400 94.87 (87.09–103.34) 33.84 40.78 (28.93–44.83)
Tyrannosaurus 6,000 129.41 (117.47–142.57) 28.8 27.05 (17.84–31.52)
Quadrupedal dinosaurs
Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)

Brachiosaurus 78,258 223.85 (199.00–251.80) 17.6 11.99 (6.39–16.04)
Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.
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 Maximum speed
increases with size:
𝑣max = 𝑎𝑀𝑏

 Takes a while to get going:
𝑣(𝑡) = 𝑣max(1 − 𝑒−𝑘𝑡)

 𝑘 ∼ 𝐹max/𝑀 ∼ 𝑐𝑀𝑑−1

Literature: 0.75 ≲ 𝑑 ≲ 0.94
 Acceleration time =

depletion time for
anaerobic energy:
𝜏 ∼ 𝑓𝑀𝑔

Literature: 0.76 ≲ 𝑔 ≲ 1.27

 𝑣max = 𝑎𝑀𝑏 (1 − 𝑒−ℎ𝑀𝑖)
 𝑖 = 𝑑 − 1 + 𝑔 and ℎ = 𝑐𝑓

 Literature search for for maximum speeds of running, flying and
swimming animals.

 Search terms: “maximum speed”, “escape speed”, and “sprint speed”.
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speed are currently lacking, but our model offers a framework to 
include temperature effects formally in future work.

In ecological research, our maximum-speed model provides 
a mechanistic understanding of the upper limit to animal move-
ment patterns during migration, dispersal or bridging habitat 
patches. The travelling speed characterizing these movements 
is the fraction of maximum speed that can be maintained over  
longer periods of time. It would be interesting to analyse how 
travel speed scales with body mass on the large body-mass 
scale and whether it also follows a hump-shaped pattern. If so, 
animals would use an approximately fixed percentage of their  
maximum speed during travel. If, however, travel speed follows 

a power-law relationship with body mass, large and small ani-
mals would use a higher proportion of their maximum speed 
during travel than intermediately sized animals. This would 
also affect different measurements of animal space use as well as 
migration and dispersal distances. Although home ranges1,41 and 
day ranges42 of animals have been shown to follow power-law 
relationships with body mass, migration distances of flying ani-
mals, for example, follow a curvilinear relationship with body 
mass43. Our new results call for mechanistic analyses of how the 
hump-shaped scaling pattern of maximum speed could poten-
tially affect other movement parameters.

The integration of our model as a species-specific scale (“what 
is physiologically possible”) with research on how this fraction 
is modified by species traits and environmental parameters such  
as landscape structure, resource availability and temperature 
(“what is ecologically realized in nature”) could help to provide 
a mechanistic understanding unifying physiological and ecologi-
cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.

Methods
Data. We searched for published literature providing data on the maximum speeds 
of running, flying and swimming animals by using the search terms “maximum 
speed”, “escape speed” and “sprint speed”. From this list, we excluded publications 
on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 
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Figure 4 | Predicting the maximum speed of extinct species with the time-
dependent model. The model prediction (grey line) is fitted to data of extant 
species (grey circles) and extended to higher body masses. Speed data 
for dinosaurs (green triangles) come from detailed morphological model 
calculations (values in Table 1) and were not used to obtain model parameters.

Table 1 | Maximum-speed predictions for extant and extinct flightless birds, and bipedal and quadrupedal dinosaurs

Taxa Body mass (kg) Speed (km h–1)

Power law (95% CI) Morphological  
models

Time-dependent model  
(95% CI)

Flightless birds
Dromaius (extant) 27.2 40.92 (38.58–43.40) 47.88 57.62 (47.65–60.91)
Struthio (extant) 65.3 49.33 (46.27–52.59) 55.44 62.75 (46.71–66.03)
Patagornis (extinct) 45 45.56 (42.83–48.46) 50.40 61.34 (47.39–64.68)
Bipedal dinosaurs
Velociraptor 20 38.32 (36.19–40.58) 38.88 54.56 (46.89–57.82)
Allosaurus 1,400 94.87 (87.09–103.34) 33.84 40.78 (28.93–44.83)
Tyrannosaurus 6,000 129.41 (117.47–142.57) 28.8 27.05 (17.84–31.52)
Quadrupedal dinosaurs
Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)

Brachiosaurus 78,258 223.85 (199.00–251.80) 17.6 11.99 (6.39–16.04)
Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.

NATURE ECOLOGY & EVOLUTION | www.nature.com/natecolevol

 Maximum speed
increases with size:
𝑣max = 𝑎𝑀𝑏

 Takes a while to get going:
𝑣(𝑡) = 𝑣max(1 − 𝑒−𝑘𝑡)

 𝑘 ∼ 𝐹max/𝑀 ∼ 𝑐𝑀𝑑−1

Literature: 0.75 ≲ 𝑑 ≲ 0.94
 Acceleration time =

depletion time for
anaerobic energy:
𝜏 ∼ 𝑓𝑀𝑔

Literature: 0.76 ≲ 𝑔 ≲ 1.27
 𝑣max = 𝑎𝑀𝑏 (1 − 𝑒−ℎ𝑀𝑖)

 𝑖 = 𝑑 − 1 + 𝑔 and ℎ = 𝑐𝑓

 Literature search for for maximum speeds of running, flying and
swimming animals.
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speed are currently lacking, but our model offers a framework to 
include temperature effects formally in future work.

In ecological research, our maximum-speed model provides 
a mechanistic understanding of the upper limit to animal move-
ment patterns during migration, dispersal or bridging habitat 
patches. The travelling speed characterizing these movements 
is the fraction of maximum speed that can be maintained over  
longer periods of time. It would be interesting to analyse how 
travel speed scales with body mass on the large body-mass 
scale and whether it also follows a hump-shaped pattern. If so, 
animals would use an approximately fixed percentage of their  
maximum speed during travel. If, however, travel speed follows 

a power-law relationship with body mass, large and small ani-
mals would use a higher proportion of their maximum speed 
during travel than intermediately sized animals. This would 
also affect different measurements of animal space use as well as 
migration and dispersal distances. Although home ranges1,41 and 
day ranges42 of animals have been shown to follow power-law 
relationships with body mass, migration distances of flying ani-
mals, for example, follow a curvilinear relationship with body 
mass43. Our new results call for mechanistic analyses of how the 
hump-shaped scaling pattern of maximum speed could poten-
tially affect other movement parameters.

The integration of our model as a species-specific scale (“what 
is physiologically possible”) with research on how this fraction 
is modified by species traits and environmental parameters such  
as landscape structure, resource availability and temperature 
(“what is ecologically realized in nature”) could help to provide 
a mechanistic understanding unifying physiological and ecologi-
cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.

Methods
Data. We searched for published literature providing data on the maximum speeds 
of running, flying and swimming animals by using the search terms “maximum 
speed”, “escape speed” and “sprint speed”. From this list, we excluded publications 
on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 
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Figure 4 | Predicting the maximum speed of extinct species with the time-
dependent model. The model prediction (grey line) is fitted to data of extant 
species (grey circles) and extended to higher body masses. Speed data 
for dinosaurs (green triangles) come from detailed morphological model 
calculations (values in Table 1) and were not used to obtain model parameters.

Table 1 | Maximum-speed predictions for extant and extinct flightless birds, and bipedal and quadrupedal dinosaurs

Taxa Body mass (kg) Speed (km h–1)

Power law (95% CI) Morphological  
models

Time-dependent model  
(95% CI)

Flightless birds
Dromaius (extant) 27.2 40.92 (38.58–43.40) 47.88 57.62 (47.65–60.91)
Struthio (extant) 65.3 49.33 (46.27–52.59) 55.44 62.75 (46.71–66.03)
Patagornis (extinct) 45 45.56 (42.83–48.46) 50.40 61.34 (47.39–64.68)
Bipedal dinosaurs
Velociraptor 20 38.32 (36.19–40.58) 38.88 54.56 (46.89–57.82)
Allosaurus 1,400 94.87 (87.09–103.34) 33.84 40.78 (28.93–44.83)
Tyrannosaurus 6,000 129.41 (117.47–142.57) 28.8 27.05 (17.84–31.52)
Quadrupedal dinosaurs
Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)

Brachiosaurus 78,258 223.85 (199.00–251.80) 17.6 11.99 (6.39–16.04)
Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.
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migration and dispersal distances. Although home ranges1,41 and 
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cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.
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on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 
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Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)
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Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.
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Engines:

BHP = brake horse power
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The allometry of nails:
Observed: Diameter ∝ Length2/3 or 𝑑 ∝ ℓ2/3.

Since ℓ𝑑2 ∝ Volume 𝑣:

 Diameter ∝

Mass2/7 or 𝑑 ∝ 𝑣2/7.

 Length ∝

Mass3/7 or ℓ ∝ 𝑣3/7.

 Nails lengthen faster than they broaden (c.f. trees).

p. 58–59, McMahon and Bonner [26]
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The allometry of nails:

A buckling instability?:

 Physics/Engineering result: Columns buckle
under a load which depends on 𝑑4/ℓ2.

 To drive nails in, posit resistive force ∝ nail
circumference = 𝜋𝑑.

 Match forces independent of nail size: 𝑑4/ℓ2 ∝ 𝑑.
 Leads to 𝑑 ∝ ℓ2/3.
 Argument made by Galileo [11] in 1638 in

“Discourses on Two New Sciences.” Also, see
here.

 Another smart person’s contribution: Euler,
1757

 Also see McMahon, “Size and Shape in Biology,”
Science, 1973. [25]

http://en.wikipedia.org/wiki/Buckling
http://www.liberliber.it/biblioteca/g/galilei/discorsi_e_dimostrazioni_matematiche_intorno_a_due_nuove_etc/pdf/discor_p.pdf
http://en.wikipedia.org/wiki/Two_New_Sciences
http://en.wikipedia.org/wiki/Buckling
http://en.wikipedia.org/wiki/Buckling
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http://en.wikipedia.org/wiki/Two_New_Sciences
http://en.wikipedia.org/wiki/Buckling
http://en.wikipedia.org/wiki/Buckling
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The allometry of nails:

A buckling instability?:
 Physics/Engineering result: Columns buckle

under a load which depends on 𝑑4/ℓ2.
 To drive nails in, posit resistive force ∝ nail

circumference = 𝜋𝑑.
 Match forces independent of nail size: 𝑑4/ℓ2 ∝ 𝑑.
 Leads to 𝑑 ∝ ℓ2/3.
 Argument made by Galileo [11] in 1638 in

“Discourses on Two New Sciences.” Also, see
here.

 Another smart person’s contribution: Euler,
1757

 Also see McMahon, “Size and Shape in Biology,”
Science, 1973. [25]

http://en.wikipedia.org/wiki/Buckling
http://www.liberliber.it/biblioteca/g/galilei/discorsi_e_dimostrazioni_matematiche_intorno_a_due_nuove_etc/pdf/discor_p.pdf
http://en.wikipedia.org/wiki/Two_New_Sciences
http://en.wikipedia.org/wiki/Buckling
http://en.wikipedia.org/wiki/Buckling
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Rowing: Speed ∝ (number of rowers)1/9

 Very weak scaling and size variation but it’s
theoretically explainable ...
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Physics:

Scaling in elementary laws of physics:
 Inverse-square law of gravity and Coulomb’s law:

𝐹 ∝ 𝑚1𝑚2
𝑟2 and 𝐹 ∝ 𝑞1𝑞2

𝑟2 .

 Force is diminished by expansion of space away
from source.

 The square is 𝑑 − 1 = 3 − 1 = 2, the dimension of a
sphere’s surface.

 We’ll see a gravity law applies for a range of
human phenomena.
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Dimensional Analysis:

The Buckingham 𝜋 theorem:3

“On Physically Similar Systems: Illustrations
of the Use of Dimensional Equations”
E. Buckingham,
Phys. Rev., 4, 345–376, 1914. [7]

As captured in the 1990s in the MIT physics library:
3*
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Vol. IV.l
No. 4. J ON PHYSICALLY SIMILAR SYSTEMS.

345

KQi,Q*, ••• Qn, r', r", •••) =o. ( I )
Let us suppose, for the present only, that the ratios r do not vary

during the phenomenon described by the equation: for example, if the
equation describes a property of a material system and involves lengths,
the system shall remain geometrically similar to itself during any changes
of size which may occur. Under this condition equation (i) reduces to

F(Qx, Qt, • • • Qn) = o. (2)

If none of the quantities involved in the relation has been overlooked,
the equation will give a complete description of the relation subsisting
among the quantities represented in it, and will be a complete equation.
The coefficients of a complete equation are dimensionless numbers, *. e.,
if the quantities Q are measured by an absolute system of units, the coef
ficients of the equation do not depend on the sizes of the fundamental
units but only on the fixed interrelations of the units which characterize
the system and differentiate it from any other absolute system.

To illustrate what is meant by a " complete " equation, we may consider
the familiar equation

Pv— = constant,

in which p is the pressure, v the specific volume, and 6 the absolute
temperature of a mass of gas. The constant is not dimensionless but
depends, even for a given gas, on the units adopted for measuring p, v,
and 9; the equation is not complete. Further investigation shows that

ON PHYSICALLY SIMILAR SYSTEMS; ILLUSTRATIONS OF
THE USE OF DIMENSIONAL EQUATIONS.

By E. Buckingham.

i. The Most General Form of Physical Equations.—Let it be required
to describe by an equation, a relation which subsists among a number of
physical quantities of n different kinds. If several quantities of any
one kind are involved in the relation, let them be specified by the value
of any one and the ratios of the others to this one. The equation will
then contain n symbols Ql - ■ ■ Qn, one for each kind of quantity, and
also, in general, a number of ratios r', r", etc., so that it may be written

BP

* I

• ••-*

E. BUCKINGHAM.

*he equation may be written

in which the symbol R stands for a quantity characteristic of each gas
and differing from one to another, but fixed for any given gas when the
units of p, v, and 0 are fixed. We thus recognize that R is a quantity that
can be measured by a unit derived from those of p, v, and d. If we do
express the value of R in terms of a unit thus derived, N is a dimensionless
constant and does not depend on the sizes of the units of p, v, and 6 but
only on the fixed relation which the unit of R bears to them. The equa-

. tion is now a " complete " equation.
Every complete physical equation (2) has the more specific form

Z M Q i ' W * ■ ■ • < 2 > = 0 . ( 3 )
Such expressions as log Q or sin Q do not occur in physical equations; for
no purely arithmetical operator, except a simple numerical multiplier,
can be applied to an operand which is not itself a dimensionless number,
because we can not assign any definite meaning to the result of such an
operation. The reason why such an expression as Q2 can appear, is that
Q2 may be regarded as a symbol for the result of operating on Q by Q.
For example, when we write A = P, P is a symbol for the result of oper
ating on a length / by itself. We are directed to take the length / as
operand and " operate on it with the length I " by constructing on it as a
base, a rectangle of altitude I; and the result of this operation, which fixes
an area A, is represented by I2. Whenever functions that do not have
the form of the terms in equation (3) appear to occur in physical equations,
it is invariably found upon examination that the arguments of these
functions are dimensionless numbers.

2. Introduction of Dimensional Conditions.—We have now to make use
of the familiar principle, which seems to have been first stated by Fourier,
that all the terms of a physical equation must have the same dimensions,

I or that every correct physical equation is dimensionally homogeneous. \
Let equation (3) be divided through by any one term and it takes the-
form

- L N Q f i Q f t ■ • • Q n ° n + 1 = 0 , ( 4 )
in which the iV's are dimensionless numbers. In virtue of the principle -
of dimensional homogeneity the exponents ax, a2, • • • an of each term of "
equation (4) must be such that that term has no dimensions or that a '
dimensional equation

is satisfied.
[&«&•» • ■ • <2„°»] = [1]

Vol. IV.l
No. 4. J ON PHYSICALLY SIMILAR SYSTEMS.

Let II represent a dimensionless product of the form

n = Qi«tQi** • • • Qn'*.
so that equation (4) may be written more shortly

Z 2 V I T + 1 = 0 . ( , ,
Since IT is dimensionless, IP is dimensionless; and furthermore, any
product of the form TI^'IV2 • • • IT;*' is also dimensionless. Hence if Hi,
ITo, • • • n,- represent all the separate independent dimensionless products
of the form (6) which can be made up in accordance with/equation (5)
from the quantities Q, equation (7) may be written in the form

SiVlVITo12 I V * + 1 = 0
and still satisfy the requirement of dimensional homogeneity.

Now there are, so far as this requirement is concerned, no restrictions
on the number of terms, the values of the coefficients, or the v^ues of
the exponents. Hence the 2 merely represents some unknown function
of the independent arguments Hi, • • • II,- and equation (8) may- more
simply be written

t f U b i i t , • • • n . ) = 0 . ( 9 )

By reason of the principle of dimensional homogeneity, every complete
physical equation of the form (2) is reducible to the form (9) in which

m = M = • • • = [ n , ] . [ 1 ] ( 1 0 )
and the number i, of separate independent arguments of \p, is the maximum
number of independent dimensionless products of the form (6) which can
be made by combining the n quantities Q\, Q» • • • Qn in different ways.

We have next to find the value of i. Let k be the number of arbitrary
fundamental units needed as a basis for the absolute system [Qi],
• " • [Qn] by which the Q's are measured. Then in principle and if we
disregard the practical considerations connected with the preservation
of standards, etc., there is always, among the n units [Q], at least one
set of k which may be used as^furtdamental units, the remaining (» — k)
being derived from them.

Now each equation of the form (5) with a particular set of exponents
a (corresponding to a particular dimensionless product IT) is an equation
to which the dimensions of the units [Q] are subject. But since (n — k)
of the units are derivable from the other k and the units are otherwise,
arbitrary, it is evident that each equation of the form (5) is in reality
equivalent to one of these equations of derivation. There are therefore
{n — k) equations of the form (5) and the number of products II which

E. BUCKINGHAM.

appear" as independent variables in equation (9) is

i = n - k.
Furthermore, if [Ql]f [Qs] ... [Qk] are k of ^ „ units
used as fundamental, the i equations (5) may be written

I ( 1 1 )
Did =[<2iai<22Si--- ft-PJ-fi]-

in which the P'8 represent &«-(?., i. e., the quantities that are
t e m p o r a r i l y , r e g a r d e d a s d e r i v e d . f G '

of i^^?^ °f 6qUati0nS (II) ^ **"« * *•* *»

convenient The resulting equation contains the » independent funZ
mental units and since both members are of zero dimensions, the ex
ponent of each unit must vanish. We therefore obtain k independent
linear equations whirh mffin* +~ a~* :_. .., , -JH^-Mqent

less and wdl be mdependent of the remaining ffs. This remark enables
us to dispense wth fracfonal exponents, when they happen to result

o u Tr e X t h e f ° r m ( U ) ' a n < J S ° t 0 S i m p H f y t h e | S ^ S S
> OuMfafe-Tk, make the meaning of the foregoing developments

more evident we may treat an example. Let us suppose that we have
to deal with a relafaon which involves one quantity of each of the following
n = 7 k i n d s : s

1. Force
2. Density
3. Length
4. Linear speed
5. Revolutions per unit time.
6. Viscosity
7. Acceleration

Symbol.
• F \. Dimensions.

[mltr*\ 1

Vol. IV.l
No. 4. J ON PHYSICALLY SIMILAR SYSTEMS.

Three fundamental units are needed, i. e», k = 3, but they need not be
[m, I, t] for we could also use [F, p, S] or [p, n, /*] or several other com
binations. On the other hand, such combinations as [/, S, n] or [S, n, g]
could not be used.

We know by section (2) that any relation whatever which involves
all the above seven quantities and no others, must be expressible by an
equation which can be reduced to the form

^ ( n , , n 2 , n 3 , n o = o ( 9 ,
because n — k = 7 — 3=4.

To find a specific form of this equation, we select 3 of the quantili,
as fundamental and proceed to use equations (11).

Let us, to start with, set

F = Qx, P = Q* D = Q3

these being a possible set of fundamental units sufficient for deriving til
others. Then S, n, p., g, act as Pi, P2, P3, P4 and we have, corresponding
to equations (11),

[FV«Z>*.S] =[i],l
[F*p*tDM = [i],
[F°*p*>DM =[i],[
[F-P^D^g] =[1],

Taking the first of these equations and substituting the dimensions
of [F, p, D, S) in it we have

and since m, I, and / are in'
and 71 are related as showj

otx -3

t, this can be satisfied only if a1( fi(\
equations

+ 1 =0,1- or ^i = h
o , 7 l = 1 .

«i = - h,

We therefore hav
write and satisfy"

pWS, which will be more convenient to
ion of being dimensionless equally well if

. = PD2$/F.
If we follow a .similar method with the remaining three equations of

the set (n, a) we have

*Mir

' ~ * ™ ~

3 5 O E . B U C K I N G H A M . L s e p i e s .

and equation (9, a) takes the form
/ pD-S1 PDf7i2 1

Our conclusion is that any equation which is the correct and complete
expression of a physical relation subsisting among seven quantities of
the kinds mentioned is reducible to the form (9, b).

If [F, p, D] were the only triad that could be used as fundamental units
for the seven kinds of quantity, equation (9, b) would be the only general
form of the equation; but in reality several other triads can be used, so
that other equations may be found which, while essentially equivalent to
(9, b), present a different appearance. If, for instance, we select the
triad [p, D, S], a process like that which led to equation (9, b) gives us
the equation

/ p D ' S 2 D n P D S D g \ . ,

to which we shall have occasion to refer later.
4.. .The General Form to Which Any Physical Equation is Reducible.—

Equation (9), subject to equations (11), gives the necessary form of any
relation which subsists among n quantities of different kinds: it is the
final form to which the dimensional conditions reduce equation (2).
Now equation (2) describes a particular form of the more general relation
described by equation (1), in which several quantities of each of the n
kinds may be involved,—all but one of each kind being specified by their
ratios to that one. Dimensional reasoning can not furnish any informa
tion regarding the influence of these dimensionless ratios on the phenome
non which is characterized by the relation in question, nor can it tell
us how they are involved in the equation which describes the relation.
But we can not assume that they are without influence, and the possi
bility of their entering into the relation must be indicated in the final
equation which corresponds to (1) as equation (9) does to (2). Since
equation (9) follows from equation (2), it is correct for any fixed values
of the r's, and it may therefore be generalized so as to be applicable to
any and all values of the ratios r by introducing the r's as independent
arguments of the unknown function \j/, which is then a function of all the
independent dimensionless combinations of powers of all the quantities
of all the n kinds which are involved in the relation to be described.

The general conclusion from the principle of dimensional homogeneity
may therefore be stated as follows: If a relation subsists among any
number of physical quantities of n different kinds, and if the symbols
Gii (?2, • • • Qn represent one quantity of each kind, wfcfle the remaining

3Stigler’s Law of Eponymy applies. See here. More later.

https://en.wikipedia.org/wiki/Buckingham_π_theorem
https://pdodds.w3.uvm.edu//research/papers/others/everything/buckingham1914a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/buckingham1914a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/buckingham1914a.pdf
http://en.wikipedia.org/wiki/Stigler's_law_of_eponymy
https://en.wikipedia.org/wiki/Dimensional_analysis#History


The PoCSverse
Scaling
56 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dimensional Analysis:4

Fundamental equations cannot depend on units:

 System involves 𝑛 related quantities with some
unknown equation 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) = 0.

 Geometric ex.: area of a square, side length ℓ:
𝐴 = ℓ2 where [𝐴] = 𝐿2 and [ℓ] = 𝐿.

 Rewrite as a relation of 𝑝 ≤ 𝑛 independent
dimensionless parameters where 𝑝 is the number of
independent dimensions (mass, length, time, luminous
intensity …):

𝐹(𝜋1, 𝜋2, … , 𝜋𝑝) = 0

 e.g., 𝐴/ℓ2 − 1 = 0 where 𝜋1 = 𝐴/ℓ2.

 Another example: 𝐹 = 𝑚𝑎 ⇒ 𝐹/𝑚𝑎 − 1 = 0.
 Plan: solve problems using only backs of envelopes.

4Length is a dimension, furlongs and smoots are units

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot


The PoCSverse
Scaling
56 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dimensional Analysis:4

Fundamental equations cannot depend on units:

 System involves 𝑛 related quantities with some
unknown equation 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) = 0.

 Geometric ex.: area of a square, side length ℓ:
𝐴 = ℓ2 where [𝐴] = 𝐿2 and [ℓ] = 𝐿.

 Rewrite as a relation of 𝑝 ≤ 𝑛 independent
dimensionless parameters where 𝑝 is the number of
independent dimensions (mass, length, time, luminous
intensity …):

𝐹(𝜋1, 𝜋2, … , 𝜋𝑝) = 0

 e.g., 𝐴/ℓ2 − 1 = 0 where 𝜋1 = 𝐴/ℓ2.

 Another example: 𝐹 = 𝑚𝑎 ⇒ 𝐹/𝑚𝑎 − 1 = 0.
 Plan: solve problems using only backs of envelopes.

4Length is a dimension, furlongs and smoots are units

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot


The PoCSverse
Scaling
56 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dimensional Analysis:4

Fundamental equations cannot depend on units:

 System involves 𝑛 related quantities with some
unknown equation 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) = 0.

 Geometric ex.: area of a square, side length ℓ:
𝐴 = ℓ2 where [𝐴] = 𝐿2 and [ℓ] = 𝐿.

 Rewrite as a relation of 𝑝 ≤ 𝑛 independent
dimensionless parameters where 𝑝 is the number of
independent dimensions (mass, length, time, luminous
intensity …):

𝐹(𝜋1, 𝜋2, … , 𝜋𝑝) = 0

 e.g., 𝐴/ℓ2 − 1 = 0 where 𝜋1 = 𝐴/ℓ2.

 Another example: 𝐹 = 𝑚𝑎 ⇒ 𝐹/𝑚𝑎 − 1 = 0.
 Plan: solve problems using only backs of envelopes.

4Length is a dimension, furlongs and smoots are units

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot


The PoCSverse
Scaling
56 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dimensional Analysis:4

Fundamental equations cannot depend on units:

 System involves 𝑛 related quantities with some
unknown equation 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) = 0.

 Geometric ex.: area of a square, side length ℓ:
𝐴 = ℓ2 where [𝐴] = 𝐿2 and [ℓ] = 𝐿.

 Rewrite as a relation of 𝑝 ≤ 𝑛 independent
dimensionless parameters where 𝑝 is the number of
independent dimensions (mass, length, time, luminous
intensity …):

𝐹(𝜋1, 𝜋2, … , 𝜋𝑝) = 0

 e.g., 𝐴/ℓ2 − 1 = 0 where 𝜋1 = 𝐴/ℓ2.

 Another example: 𝐹 = 𝑚𝑎 ⇒ 𝐹/𝑚𝑎 − 1 = 0.
 Plan: solve problems using only backs of envelopes.

4Length is a dimension, furlongs and smoots are units

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot


The PoCSverse
Scaling
56 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dimensional Analysis:4

Fundamental equations cannot depend on units:

 System involves 𝑛 related quantities with some
unknown equation 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) = 0.

 Geometric ex.: area of a square, side length ℓ:
𝐴 = ℓ2 where [𝐴] = 𝐿2 and [ℓ] = 𝐿.

 Rewrite as a relation of 𝑝 ≤ 𝑛 independent
dimensionless parameters where 𝑝 is the number of
independent dimensions (mass, length, time, luminous
intensity …):

𝐹(𝜋1, 𝜋2, … , 𝜋𝑝) = 0

 e.g., 𝐴/ℓ2 − 1 = 0 where 𝜋1 = 𝐴/ℓ2.

 Another example: 𝐹 = 𝑚𝑎 ⇒ 𝐹/𝑚𝑎 − 1 = 0.
 Plan: solve problems using only backs of envelopes.

4Length is a dimension, furlongs and smoots are units

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot


The PoCSverse
Scaling
56 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dimensional Analysis:4

Fundamental equations cannot depend on units:

 System involves 𝑛 related quantities with some
unknown equation 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) = 0.

 Geometric ex.: area of a square, side length ℓ:
𝐴 = ℓ2 where [𝐴] = 𝐿2 and [ℓ] = 𝐿.

 Rewrite as a relation of 𝑝 ≤ 𝑛 independent
dimensionless parameters where 𝑝 is the number of
independent dimensions (mass, length, time, luminous
intensity …):

𝐹(𝜋1, 𝜋2, … , 𝜋𝑝) = 0

 e.g., 𝐴/ℓ2 − 1 = 0 where 𝜋1 = 𝐴/ℓ2.

 Another example: 𝐹 = 𝑚𝑎 ⇒ 𝐹/𝑚𝑎 − 1 = 0.

 Plan: solve problems using only backs of envelopes.

4Length is a dimension, furlongs and smoots are units

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot


The PoCSverse
Scaling
56 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dimensional Analysis:4

Fundamental equations cannot depend on units:

 System involves 𝑛 related quantities with some
unknown equation 𝑓(𝑞1, 𝑞2, … , 𝑞𝑛) = 0.

 Geometric ex.: area of a square, side length ℓ:
𝐴 = ℓ2 where [𝐴] = 𝐿2 and [ℓ] = 𝐿.

 Rewrite as a relation of 𝑝 ≤ 𝑛 independent
dimensionless parameters where 𝑝 is the number of
independent dimensions (mass, length, time, luminous
intensity …):

𝐹(𝜋1, 𝜋2, … , 𝜋𝑝) = 0

 e.g., 𝐴/ℓ2 − 1 = 0 where 𝜋1 = 𝐴/ℓ2.

 Another example: 𝐹 = 𝑚𝑎 ⇒ 𝐹/𝑚𝑎 − 1 = 0.
 Plan: solve problems using only backs of envelopes.

4Length is a dimension, furlongs and smoots are units

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot


The PoCSverse
Scaling
57 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Example:

Simple pendulum:

 Idealized mass/platypus
swinging forever.

 Four quantities:

1. Length ℓ,
2. mass 𝑚,
3. gravitational

acceleration 𝑔, and
4. pendulum’s period 𝜏 .

 Variable dimensions: [ℓ] = 𝐿, [𝑚] = 𝑀 , [𝑔] = 𝐿𝑇 −2,
and [𝜏 ] = 𝑇 .

 Turn over your envelopes and find some 𝜋’s.
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A little formalism:

 Game: find all possible independent combinations of
the {𝑞1, 𝑞2, … , 𝑞𝑛}, that form dimensionless quantities
{𝜋1, 𝜋2, … , 𝜋𝑝}, where we need to figure out 𝑝 (which
must be ≤ 𝑛).

 Consider 𝜋𝑖 = 𝑞𝑥1
1 𝑞𝑥2

2 ⋯ 𝑞𝑥𝑛𝑛 .

 We (desperately) want to find all sets of powers 𝑥𝑗 that
create dimensionless quantities.

 Dimensions: want [𝜋𝑖] = [𝑞1]𝑥1 [𝑞2]𝑥2 ⋯ [𝑞𝑛]𝑥𝑛 = 1.
 For the platypus pendulum we have

[𝑞1] = 𝐿, [𝑞2] = 𝑀 , [𝑞3] = 𝐿𝑇 −2, and [𝑞4] = 𝑇 ,

with dimensions 𝑑1 = 𝐿, 𝑑2 = 𝑀 , and 𝑑3 = 𝑇 .

 So: [𝜋𝑖] = 𝐿𝑥1𝑀𝑥2(𝐿𝑇 −2)𝑥3𝑇 𝑥4 .

 We regroup: [𝜋𝑖] = 𝐿𝑥1+𝑥3𝑀𝑥2𝑇 −2𝑥3+𝑥4 .

 We now need: 𝑥1 + 𝑥3 = 0, 𝑥2 = 0, and −2𝑥3 + 𝑥4 = 0.
 Time for

matrixology …
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 So: [𝜋𝑖] = 𝐿𝑥1𝑀𝑥2(𝐿𝑇 −2)𝑥3𝑇 𝑥4 .

 We regroup: [𝜋𝑖] = 𝐿𝑥1+𝑥3𝑀𝑥2𝑇 −2𝑥3+𝑥4 .

 We now need: 𝑥1 + 𝑥3 = 0, 𝑥2 = 0, and −2𝑥3 + 𝑥4 = 0.

 Time for

matrixology …
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Well, of course there are matrices:

 Thrillingly, we have:

A𝑥⃗ = ⎡⎢
⎣

1 0 1 0
0 1 0 0
0 0 −2 1

⎤⎥
⎦

⎡
⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥
⎦

= ⎡⎢
⎣

0
0
0

⎤⎥
⎦

 A nullspace equation: A𝑥⃗ = 0⃗.
 Number of dimensionless parameters = Dimension of

null space = 𝑛 − 𝑟 where 𝑛 is the number of columns of
A and 𝑟 is the rank of A.

 Here: 𝑛 = 4 and 𝑟 = 3

→ 𝐹(𝜋1) = 0 → 𝜋1 = const.

 In general: Create a matrix A where 𝑖𝑗th entry is the
power of dimension 𝑖 in the 𝑗th variable, and solve by
row reduction to find basis null vectors.

 We (you) find: 𝜋1 = ℓ/𝑔𝜏2 = const.

Upshot: 𝜏 ∝
√

ℓ.

Insert question from assignment 2

https://pdodds.w3.uvm.edu//teaching/courses/2021-2022principles-of-complex-systems//assignments/02/
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“Scaling, self-similarity, and intermediate
asymptotics”
by G. I. Barenblatt (1996). [2]

G. I. Taylor, magazines, and classified secrets:

1945
New Mexico
Trinity test:

Self-similar blast wave:

 Radius: [𝑅] = 𝐿,
Time: [𝑡] = 𝑇 ,
Density of air: [𝜌] = 𝑀/𝐿3,
Energy: [𝐸] = 𝑀𝐿2/𝑇 2.

 Four variables, three dimensions.

 One dimensionless variable:
𝐸 = constant × 𝜌𝑅5/𝑡2.

 Scaling: Speed decays as 1/𝑅3/2.

Related: Radiolab’s Elements on the Cold War, the Bomb
Pulse, and the dating of cell age (33:30).

http://www.amazon.com/dp/0521435226/
http://www.amazon.com/dp/0521435226/
http://www.amazon.com/dp/0521435226/
http://www.radiolab.org/story/elements/
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http://www.amazon.com/dp/0521435226/
http://www.amazon.com/dp/0521435226/
http://www.radiolab.org/story/elements/
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Sorting out base units of fundamental
measurement:
SI base units were redefined in 2019:

Acd

kg

s m

K mol

by Dono/Wikipedia

by Wikipetzi/Wikipedia

 Now: kilogram is an artifact in
Sèvres, France.

 Defined by fixing Planck’s
constant as 6.62607015 × 10−34

s−1⋅m2⋅kg.3
 Metre chosen to fix speed of

light at 299,792,458 m⋅s−1.
 Radiolab piece: ≤ kg

3Not without some arguing …

https://en.wikipedia.org/wiki/Proposed_redefinition_of_SI_base_units
https://en.wikipedia.org/wiki/Kilogram#International_prototype_kilogram
http://www.radiolab.org/story/kg/
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Turbulence:

Big whirls have little whirls
That heed on their velocity,
And little whirls have littler
whirls
And so on to viscosity.

— Lewis Fry Richardson

 Image from here.

 Jonathan Swift (1733): “Big fleas have little fleas upon
their backs to bite ’em, And little fleas have lesser fleas,
and so, ad infinitum.” The Siphonaptera.

https://en.wikipedia.org/wiki/Lewis_Fry_Richardson
http://www.efluids.com/efluids/gallery/gallery_pages/jet_cfd_page.jsp
https://en.wikipedia.org/wiki/The_Siphonaptera
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278 J Math Imaging Vis (2008) 30: 275–283

Fig. 2 Simplified example to illustrate the procedure for obtaining the
PDF of the luminance differences of a gray scale image. (a) 5×5 pixel
gray scale image stored using 3 bits per pixel; 0 corresponds to black

and 7 to white. (b) Histogram of the differences of the luminance
of pixels separated by R = 3, obtained from the matrix L (Fig. 3).
(c) Semilog plot of the normalized PDF (see text for details)

Fig. 3 Luminace differences for different pixel separations for the ex-
ample in Fig. 2a. Diagonal distances were approximated by the nearest
integer function

5 Results

Starry Night (June, 1889), painted during his one year pe-
riod in the Saint Paul de Mausole Asylum at Saint-Rémy-
de-Provence, is undoubtedly one of the best known and most
reproduced paintings by van Gogh (Fig. 4). The composition
describes an imaginary sky in a twilight state, transfigured
by a vigorous circular brushwork. To perform the luminance
statistics of Starry Night, we start from a digitized, 300 dpi,
2750 × 3542 image obtained from The Museum of Modern
Art in New York (where the original painting lies), provided
by Art Resource, Inc. The PDF of pixel luminance fluctu-
ations of the overall image was calculated as described in
Sect. 4 and in Fig. 5 we show this function for six pixel sep-
arations, R = 60, 240, 400, 600, 800, 1200. In order to rule
out scaling artifacts, we have systematically recalculated the

Fig. 4 Vincent van Gogh’s Starry Night (taken from the WebMu-
seum-Paris webpage: www.ibiblio.org/wm/)

Fig. 5 Semi-log plot of the probability density P (δu) of luminance
changes δu for pixel separations R = 60, 240, 400, 600, 800, 1200
(from bottom to top). Curves have been vertically shifted for better
visibility. Data points were fitted according to (2), and the results are
shown in full lines; parameter values are λ = 0.2, 0.15, 0.12, 0.11,
0.09, 0.0009 (from bottom to top) and σ0 = 1.0

PDF function for the same image at lower resolutions (with
an adequate rescaling of the pixel separations R). No sig-

“Turbulent luminance in impassioned van
Gogh paintings”
Aragón et al.,
J. Math. Imaging Vis., 30, 275–283, 2008. [1]

 Examined the probability pixels a distance 𝑅 apart
share the same luminance.

 “Van Gogh painted perfect turbulence” by
Phillip Ball, July 2006.

 Apparently not observed in other famous painter’s
works or when van Gogh was stable.

 Oops: Small ranges and natural log used.

https://pdodds.w3.uvm.edu//research/papers/others/everything/aragon2008a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/aragon2008a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/aragon2008a.pdf
http://www.nature.com/news/2006/060703/full/news060703-17.html
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Advances in turbulence:
In 1941, Kolmogorov, armed only with
dimensional analysis and an envelope figures this
out: [18]

𝐸(𝑘) = 𝐶𝜖2/3𝑘−5/3

 𝐸(𝑘) = energy spectrum function.
 𝜖 = rate of energy dissipation.
 𝑘 = 2𝜋/𝜆 = wavenumber.

 Energy is distributed across all modes, decaying
with wave number.

 No internal characteristic scale to turbulence.
 Stands up well experimentally and there has been

no other advance of similar magnitude.
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“The Geometry of Nature”: Fractals

4

 “Anomalous” scaling of
lengths, areas, volumes
relative to each other.

 The enduring question:
how do self-similar
geometries form?

 Robert E. Horton: Self-similarity of river (branching)
networks (1945). [13]

 Harold Hurst—Roughness of time series (1951). [14]

 Lewis Fry Richardson—Coastlines (1961).

 Benoît B. Mandelbrot—Introduced the term
“Fractals” and explored them everywhere, 1960s
on. [22, 23, 24]

dNote to self: Make millions with the “Fractal Diet”

https://en.wikipedia.org/wiki/Fractal
https://en.wikipedia.org/wiki/Robert_E._Horton
https://en.wikipedia.org/wiki/Hurst_exponent
https://en.wikipedia.org/wiki/Lewis_Fry_Richardson
https://en.wikipedia.org/wiki/Benoit_Mandelbrot
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Scaling in Cities:

Growth, innovation, scaling, and the pace
of life in cities
Luís M. A. Bettencourt*†, José Lobo‡, Dirk Helbing§, Christian Kühnert§, and Geoffrey B. West*¶

*Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545; ‡Global Institute of Sustainability, Arizona State University,
P.O. Box 873211, Tempe, AZ 85287-3211; §Institute for Transport and Economics, Dresden University of Technology, Andreas-Schubert-Strasse 23,
D-01062 Dresden, Germany; and ¶Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

Edited by Elinor Ostrom, Indiana University, Bloomington, IN, and approved March 6, 2007 (received for review November 19, 2006)

Humanity has just crossed a major landmark in its history with the
majority of people now living in cities. Cities have long been
known to be society’s predominant engine of innovation and
wealth creation, yet they are also its main source of crime, pollu-
tion, and disease. The inexorable trend toward urbanization world-
wide presents an urgent challenge for developing a predictive,
quantitative theory of urban organization and sustainable devel-
opment. Here we present empirical evidence indicating that the
processes relating urbanization to economic development and
knowledge creation are very general, being shared by all cities
belonging to the same urban system and sustained across different
nations and times. Many diverse properties of cities from patent
production and personal income to electrical cable length are
shown to be power law functions of population size with scaling
exponents, �, that fall into distinct universality classes. Quantities
reflecting wealth creation and innovation have � �1.2 >1 (increas-
ing returns), whereas those accounting for infrastructure display �

�0.8 <1 (economies of scale). We predict that the pace of social life
in the city increases with population size, in quantitative agree-
ment with data, and we discuss how cities are similar to, and differ
from, biological organisms, for which �<1. Finally, we explore
possible consequences of these scaling relations by deriving
growth equations, which quantify the dramatic difference be-
tween growth fueled by innovation versus that driven by econo-
mies of scale. This difference suggests that, as population grows,
major innovation cycles must be generated at a continually accel-
erating rate to sustain growth and avoid stagnation or collapse.

population � sustainability � urban studies � increasing returns �
economics of scale

Humanity has just crossed a major landmark in its history with
the majority of people now living in cities (1, 2). The present

worldwide trend toward urbanization is intimately related to
economic development and to profound changes in social orga-
nization, land use, and patterns of human behavior (1, 2). The
demographic scale of these changes is unprecedented (2, 3) and
will lead to important but as of yet poorly understood impacts on
the global environment. In 2000, �70% of the population in
developed countries lived in cities compared with �40% in
developing countries. Cities occupied a mere 0.3% of the total
land area but �3% of arable land. By 2030, the urban population
of developing countries is expected to more than double to �4
billion, with an estimated 3-fold increase in occupancy of land
area (3), whereas in developed countries it may still increase by
as much as 20%. Paralleling this global urban expansion, there
is the necessity for a sustainability transition (4–6) toward a
stable total human population, together with a rise in living
standards and the establishment of long-term balances between
human development needs and the planet’s environmental limits
(7). Thus, a major challenge worldwide (5, 6) is to understand
and predict how changes in social organization and dynamics
resulting from urbanization will impact the interactions between
nature and society (8).

The increasing concentration of people in cities presents both
opportunities and challenges (9) toward future scenarios of
sustainable development. On the one hand, cities make possible
economies of scale in infrastructure (9) and facilitate the opti-
mized delivery of social services, such as education, health care,
and efficient governance. Other impacts, however, arise because
of human adaptation to urban living (9, 10–14). They can be
direct, resulting from obvious changes in land use (3) [e.g., urban
heat island effects (15, 16) and increased green house gas
emissions (17)] or indirect, following from changes in consump-
tion (18) and human behavior (10–14), already emphasized in
classical work by Simmel and Wirth in urban sociology (11, 12)
and by Milgram in psychology (13). An important result of
urbanization is also an increased division of labor (10) and the
growth of occupations geared toward innovation and wealth
creation (19–22). The features common to this set of impacts are
that they are open-ended and involve permanent adaptation,
whereas their environmental implications are ambivalent, ag-
gravating stresses on natural environments in some cases and
creating the conditions for sustainable solutions in others (9).

These unfolding complex demographic and social trends make
it clear that the quantitative understanding of human social
organization and dynamics in cities (7, 9) is a major piece of the
puzzle toward navigating successfully a transition to sustainabil-
ity. However, despite much historical evidence (19, 20) that cities
are the principal engines of innovation and economic growth, a
quantitative, predictive theory for understanding their dynamics
and organization (23, 24) and estimating their future trajectory
and stability remains elusive. Significant obstacles toward this
goal are the immense diversity of human activity and organiza-
tion and an enormous range of geographic factors. Nevertheless,
there is strong evidence of quantitative regularities in the
increases in economic opportunities (25–29), rates of innovation
(21, 22), and pace of life (11–14, 30) observed between smaller
towns and larger cities.

In this work, we show that the social organization and dynam-
ics relating urbanization to economic development and knowl-
edge creation, among other social activities, are very general and
appear as nontrivial quantitative regularities common to all
cities, across urban systems. We present an extensive body of
empirical evidence showing that important demographic, socio-
economic, and behavioral urban indicators are, on average,

Author contributions: L.M.A.B., J.L., and G.B.W. designed research; L.M.A.B., J.L., D.H., C.K.,
and G.B.W. performed research; L.M.A.B. and G.B.W. contributed new reagents/analytic
tools; L.M.A.B., J.L., D.H., and C.K. analyzed data; and L.M.A.B., J.L., and G.B.W. wrote the
paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Abbreviation: MSA, metropolitan statistical area.

†To whom correspondence should be addressed. E-mail: lmbett@lanl.gov.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0610172104/DC1.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0610172104 PNAS � April 24, 2007 � vol. 104 � no. 17 � 7301–7306

SU
ST

A
IN

A
BI

LI
TY

SC
IE

N
CE

“Growth, innovation, scaling, and the pace
of life in cities”
Bettencourt et al.,
Proc. Natl. Acad. Sci., 104, 7301–7306,
2007. [4]

 Quantified levels of
 Infrastructure
 Wealth
 Crime levels
 Disease
 Energy consumption

as a function of city size 𝑁 (population).

https://pdodds.w3.uvm.edu//research/papers/others/everything/bettencourt2007a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/bettencourt2007a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/bettencourt2007a.pdf
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Urban Growth Equation. Growth is constrained by the availability
of resources and their rates of consumption. Resources, Y, are
used for both maintenance and growth. If, on average, it requires
a quantity R per unit time to maintain an individual and a
quantity E to add a new one to the population, then this
allocation of resources is expressed as Y ! RN " E (dN/dt),
where dN/dt is the population growth rate. This relation leads to
the general growth equation:

dN#t$
dt ! !Y0

E "N#t$" # !R
E"N#t$. [2]

Its generic structure captures the essential features contributing
to growth. Although additional contributions can be made, they
can be incorporated by a suitable interpretation of the param-
eters Y0, R, and E [for generalization, see supporting information
(SI) Text]. The solution of Eq. 2 is given by

N#t$ ! #Y0

R $ !N1%"#0$ #
Y0

R "exp#%
R
E #1 # "$ t$ $ 1

1%"
. [3]

This solution exhibits strikingly different behaviors depending
on whether " &1, '1, or ! 1: When " ! 1, the solution reduces
to an exponential: N(t) ! N(0)e(Y0 % R)t/E (Fig. 3b), whereas for
" &1 it leads to a sigmoidal growth curve, in which growth ceases
at large times (dN/dt ! 0), as the population approaches a finite
carrying capacity N( ! (Y0/R)1/(1%") (Fig. 3a). This solution is
characteristic of biological systems where the predictions of Eq.
2 are in excellent agreement with data (41). Thus, cities and,
more generally, social organizations that are driven by econo-
mies of scale are destined to eventually stop growing (43–45).

The character of the solution changes dramatically when growth
is driven by innovation and wealth creation, " '1. If N(0) &
(R/Y0)1("%1), Eq. 2 leads to unbounded growth for N(t) (Fig. 3c).
Growth becomes faster than exponential, eventually leading to an
infinite population in a finite amount of time given by

tc ! #
E

#" # 1$R 1n# 1 #
R
Y0

N1%"#0$$
% # E

#" # 1$R$ 1
N"%1#0$

. [4]

This growth behavior has powerful consequences because, in
practice, the resources driving Eq. 2 are ultimately limited so the
singularity is never reached; thus, if conditions remain un-
changed, unlimited growth is unsustainable. Left unchecked, this
lack of sustainability triggers a transition to a phase where
N(0) ' (R/Y0)1/("%1), leading to stagnation and ultimate collapse
(Fig. 3d).

To avoid this crisis and subsequent collapse, major qualitative
changes must occur which effectively reset the initial conditions
and parameters of Eq. 3. Thus, to maintain growth, the response
must be ‘‘innovative’’ to ensure that the predominant dynamic of
the city remains in the ‘‘wealth and knowledge creation’’ phase
where " '1 and N(0) ' (R/Y0)1/("%1). In that case, a new cycle
is initiated, and the city continues to grow following Eq. 2 and
Fig. 3c but with new parameters and initial conditions, Ni(0), the
population at the transition time between adjacent cycles. This
process can be continually repeated leading to multiple cycles,
thereby pushing potential collapse into the future, Fig. 4a.

Unfortunately, however, the solution that innovation and
corresponding wealth creation are stimulated responses to en-
sure continued growth has further consequences with potentially

Fig. 1. Examples of scaling relationships. (a) Total wages per MSA in 2004 for
the U.S. (blue points) vs. metropolitan population. (b) Supercreative employ-
ment per MSA in 2003, for the U.S. (blue points) vs. metropolitan population.
Best-fit scaling relations are shown as solid lines.

Fig. 2. The pace of urban life increases with city size in contrast to the pace
of biological life, which decreases with organism size. (a) Scaling of walking
speed vs. population for cities around the world. (b) Heart rate vs. the size
(mass) of organisms.

7304 & www.pnas.org'cgi'doi'10.1073'pnas.0610172104 Bettencourt et al.
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Scaling in Cities:

cities that are superficially quite different in form and location,
for example, are in fact, on the average, scaled versions of one
another, in a very specific but universal fashion prescribed by the
scaling laws of Table 1.

Despite the ubiquity of approximate power law scaling, there
is no simple analogue to the universal quarter-powers observed
in biology. Nevertheless, Table 1 reveals a taxonomic universality
whereby exponents fall into three categories defined by ! ! 1
(linear), !"1 (sublinear), and !#1 (superlinear), with ! in each
category clustering around similar values: (i) ! $1 is usually
associated with individual human needs (job, house, household
water consumption). (ii) ! $0.8 "1 characterizes material
quantities displaying economies of scale associated with infra-
structure, analogous to similar quantities in biology. (iii) !
$1.1–1.3 #1 signifies increasing returns with population size and
is manifested by quantities related to social currencies, such as
information, innovation or wealth, associated with the intrinsi-
cally social nature of cities.

The most striking feature of the data is perhaps the many
urban indicators that scale superlinearly (! #1). These indicators
reflect unique social characteristics with no equivalent in biology
and are the quantitative expression that knowledge spillovers
drive growth (25, 26), that such spillovers in turn drive urban
agglomeration (26, 27), and that larger cities are associated with
higher levels of productivity (28, 29). Wages, income, growth
domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors
(21, 22) all scale superlinearly with city size, over different years
and nations with exponents that, although differing in detail, are
statistically consistent. Costs, such as housing, similarly scale
superlinearly, approximately mirroring increases in average
wealth.

One of the most intriguing outcomes of the analysis is that the
value of the exponents in each class clusters around the same
number for a plethora of phenomena that are superficially quite
different and seemingly unrelated, ranging from wages and
patent production to the speed of walking (see below). This

behavior strongly suggests that there is a universal social dynamic
at play that underlies all these phenomena, inextricably linking
them in an integrated dynamical network, which implies, for
instance, that an increase in productive social opportunities, both
in number and quality, leads to quantifiable changes in individual
behavior across the full complexity of human expression (10–
14), including those with negative consequences, such as costs,
crime rates, and disease incidence (19, 42).

For systems exhibiting scaling in rates of resource consump-
tion, characteristic times are predicted to scale as N1%!, whereas
rates scale as their inverse, N!%1. Thus, if ! "1, as in biology, the
pace of life decreases with increasing size, as observed. However,
for processes driven by innovation and wealth creation, ! #1 as
in urban systems, the situation is reversed: thus, the pace of
urban life is predicted to increase with size (Fig. 2). Anecdotally,
this feature is widely recognized in urban life, pointed out long
ago by Simmel, Wirth, Milgram, and others (11–14). Quantita-
tive confirmation is provided by urban crime rates (42), rates of
spread of infectious diseases such as AIDS, and even pedestrian
walking speeds (30), which, when plotted logarithmically, exhibit
power law scaling with an exponent of 0.09 & 0.02 (R2 ! 0.80;
Fig. 2a), consistent with our prediction.

There are therefore two distinct characteristics of cities re-
vealed by their very different scaling behaviors, resulting from
fundamentally different, and even competing, underlying dy-
namics (9): material economies of scale, characteristic of infra-
structure networks, vs. social interactions, responsible for inno-
vation and wealth creation. The tension between these
characteristics is illustrated by the ambivalent behavior of en-
ergy-related variables: whereas household consumption scales
approximately linearly and economies of scale are realized in
electrical cable lengths, total consumption scales superlinearly.
This difference can only be reconciled if the distribution network
is suboptimal, as observed in the scaling of resistive losses, where
! ! 1.11 & 0.06 (R2 ! 0.79). Which, then, of these two dynamics,
efficiency or wealth creation, is the primary determinant of
urbanization, and how does each impact urban growth?

Table 1. Scaling exponents for urban indicators vs. city size

Y ! 95% CI Adj-R2 Observations Country–year

New patents 1.27 '1.25,1.29( 0.72 331 U.S. 2001
Inventors 1.25 '1.22,1.27( 0.76 331 U.S. 2001
Private R&D employment 1.34 '1.29,1.39( 0.92 266 U.S. 2002
)Supercreative) employment 1.15 '1.11,1.18( 0.89 287 U.S. 2003
R&D establishments 1.19 '1.14,1.22( 0.77 287 U.S. 1997
R&D employment 1.26 '1.18,1.43( 0.93 295 China 2002
Total wages 1.12 '1.09,1.13( 0.96 361 U.S. 2002
Total bank deposits 1.08 '1.03,1.11( 0.91 267 U.S. 1996
GDP 1.15 '1.06,1.23( 0.96 295 China 2002
GDP 1.26 '1.09,1.46( 0.64 196 EU 1999–2003
GDP 1.13 '1.03,1.23( 0.94 37 Germany 2003
Total electrical consumption 1.07 '1.03,1.11( 0.88 392 Germany 2002
New AIDS cases 1.23 '1.18,1.29( 0.76 93 U.S. 2002–2003
Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003

Total housing 1.00 '0.99,1.01( 0.99 316 U.S. 1990
Total employment 1.01 '0.99,1.02( 0.98 331 U.S. 2001
Household electrical consumption 1.00 '0.94,1.06( 0.88 377 Germany 2002
Household electrical consumption 1.05 '0.89,1.22( 0.91 295 China 2002
Household water consumption 1.01 '0.89,1.11( 0.96 295 China 2002

Gasoline stations 0.77 '0.74,0.81( 0.93 318 U.S. 2001
Gasoline sales 0.79 '0.73,0.80( 0.94 318 U.S. 2001
Length of electrical cables 0.87 '0.82,0.92( 0.75 380 Germany 2002
Road surface 0.83 '0.74,0.92( 0.87 29 Germany 2002

Data sources are shown in SI Text. CI, confidence interval; Adj-R2, adjusted R2; GDP, gross domestic product.

Bettencourt et al. PNAS ! April 24, 2007 ! vol. 104 ! no. 17 ! 7303
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Scaling in Cities:
Intriguing findings:
 Global supply costs scale sublinearly with 𝑁

(𝛽 < 1).
 Returns to scale for infrastructure.

 Total individual costs scale linearly with 𝑁 (𝛽 = 1)
 Individuals consume similar amounts

independent of city size.

 Social quantities scale superlinearly with 𝑁 (𝛽 > 1)
 Creativity (# patents), wealth, disease, crime, ...

Density doesn’t seem to matter...
 Surprising given that across the world, we observe

two orders of magnitude variation in area covered
by agglomerations of fixed populations.

http://en.wikipedia.org/wiki/Urban_agglomeration
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At the start of the twenty-first century, 
cities emerged as the source of the 
greatest challenges that the planet 

has faced since humans became social. 
Although they have proven to be human-
ity’s engines of creativity, wealth creation 
and economic growth, cities have also been 
the source of much pollution and disease. 
Rapid urbanization and accelerating socio-
economic development have generated 
global problems from climate change and 
its environmental impacts to incipient  
crises in food, energy and water availabil-
ity, public health, financial markets and the  
global economy1,2. 

Urbanization is a relatively new global 
issue. As recently as 1950, only 30% of the 
world’s population was urbanized. Today, 
more than half live in urban centres. The 
developed world is now about 80% urban 
and this is expected to be true for the entire 
planet by around 2050, with some 2 billion 
people moving to cities, especially in China, 
India, southeast Asia and Africa2.

Cities are complex systems whose infra-
structural, economic and social components 
are strongly interrelated and therefore dif-
ficult to understand in isolation3. The many 
problems associated with urban growth and 
global sustainability, however, are typically 
treated as independent issues. This frequently 
results in ineffective policy and often leads to 

unfortunate and sometimes disastrous unin-
tended consequences. Policies meant to con-
trol population movements and the spread of 
slums in megacities, or to reverse urban decay, 
have largely proven ineffective or counterpro-
ductive, despite huge expenditure. 

In New York City in the 1970s, for example, 
a strategy of ‘planned shrinkage’ intentionally 
removed essential services from some urban 
areas — notably the Bronx — to prompt peo-
ple to move away and allow for redevelopment. 
Instead, this strategy led to increases in crime 
and general socio-economic degradation.  
In North America in the 1950s to 1970s (and 
earlier in Europe), policies of urban renewal 
intended to reduce high urban densities, 
by razing poorer old neighbourhoods and 
creating infrastructure, actually ended up 
encouraging urban sprawl3. Similar debates 
continue to play out in rapidly develop-
ing cities around the world today, from  
Beijing to Rio de Janeiro in Brazil, often lead-
ing to similar mistakes. 

But cities supply solutions as well as 
problems, as they are the world’s centres of 
creativity, power and wealth. So the need is 
urgent for an integrated, quantitative, pre-
dictive, science-based understanding of the 
dynamics, growth and organization of cit-
ies. To combat the multiple threats facing 
humanity, a ‘grand unified theory of sus-
tainability’ with cities and urbanization at its 

core must be developed. Such an ambitious  
programme requires major international 
commitment and dedicated transdiscipli-
nary collaboration across science, economics 
and technology, including business leaders 
and practitioners, such as planners and 
designers. Developing a predictive frame-
work applicable to cities around the world 
is a daunting task, given their extraordi-
nary complexity and diversity. However, we  
are strongly encouraged that this might  
be possible. 

UNIVERSAL FEATURES
Cities manifest remarkably universal, quan-
tifiable features. This is shown by new analy-
ses of large urban data sets, spanning several 
decades and hundreds of urban centres in 
regions and countries around the world 
from the United States and Europe to China 
and Brazil4,5. Surprisingly, size is the major 
determinant of most characteristics of a city; 
history, geography and design have second-
ary roles4,6. 

Three main characteristics vary system-
atically with population. One, the space 
required per capita shrinks, thanks to 
denser settlement and a more intense use 
of infrastructure. Two, the pace of all socio-
 economic activity accelerates, leading to 
higher productivity. And three, economic 
and social activities diversify and become 
more interdependent, resulting in new 
forms of economic specialization and cul-
tural expression.

We have recently shown that these general  
trends can be expressed as simple math-
ematical ‘laws’. For example, doubling the 
population of any city requires only about 
an 85% increase in infrastructure, whether 
that be total road surface, length of electrical 
cables, water pipes or number of petrol sta-
tions4. This systematic 15% savings happens 
because, in general, creating and operating 
the same infrastructure at higher densities 
is more efficient, more economically viable, 
and often leads to higher-quality services 
and solutions that are impossible in smaller 
places. Interestingly, there are similar savings 
in carbon footprints7,8 — most large, devel-
oped cities are ‘greener’ than their national 
average in terms of per capita carbon emis-
sions. It is as yet unclear whether this is also 
true for cities undergoing extremely rapid 
development, as in China or India, where 
data are poor or lacking. 

Similar economies of scale are found in 
organisms and communities like anthills 
and beehives, where the savings are closer 
to 20%9. Such regularities originate in the 
mathematical properties of the multiple 

A unified theory 
of urban living

It is time for a science of how city growth affects society 
and environment, say Luis Bettencourt and Geoffrey West. 
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Full content and enhanced 
graphics at: nature.com/cities

SCIENCE AND THE CITY
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COMMENT

© 20  Macmillan Publishers Limited. All rights reserved10

“Urban scaling and its deviations:
Revealing the structure of wealth,
innovation and crime across cities”
Bettencourt et al.,
PLoS ONE, 5, e13541, 2010. [5]

Comparing city features across populations:
 Cities = Metropolitan Statistical Areas (MSAs)

 Story: Fit scaling law and examine residuals
 Does a city have more or less crime than expected

when normalized for population?
 Same idea as Encephalization Quotient (EQ).

https://pdodds.w3.uvm.edu//research/papers/others/everything/bettencourt2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/bettencourt2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/bettencourt2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/bettencourt2010a.pdf
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At the start of the twenty-first century, 
cities emerged as the source of the 
greatest challenges that the planet 

has faced since humans became social. 
Although they have proven to be human-
ity’s engines of creativity, wealth creation 
and economic growth, cities have also been 
the source of much pollution and disease. 
Rapid urbanization and accelerating socio-
economic development have generated 
global problems from climate change and 
its environmental impacts to incipient  
crises in food, energy and water availabil-
ity, public health, financial markets and the  
global economy1,2. 

Urbanization is a relatively new global 
issue. As recently as 1950, only 30% of the 
world’s population was urbanized. Today, 
more than half live in urban centres. The 
developed world is now about 80% urban 
and this is expected to be true for the entire 
planet by around 2050, with some 2 billion 
people moving to cities, especially in China, 
India, southeast Asia and Africa2.

Cities are complex systems whose infra-
structural, economic and social components 
are strongly interrelated and therefore dif-
ficult to understand in isolation3. The many 
problems associated with urban growth and 
global sustainability, however, are typically 
treated as independent issues. This frequently 
results in ineffective policy and often leads to 

unfortunate and sometimes disastrous unin-
tended consequences. Policies meant to con-
trol population movements and the spread of 
slums in megacities, or to reverse urban decay, 
have largely proven ineffective or counterpro-
ductive, despite huge expenditure. 

In New York City in the 1970s, for example, 
a strategy of ‘planned shrinkage’ intentionally 
removed essential services from some urban 
areas — notably the Bronx — to prompt peo-
ple to move away and allow for redevelopment. 
Instead, this strategy led to increases in crime 
and general socio-economic degradation.  
In North America in the 1950s to 1970s (and 
earlier in Europe), policies of urban renewal 
intended to reduce high urban densities, 
by razing poorer old neighbourhoods and 
creating infrastructure, actually ended up 
encouraging urban sprawl3. Similar debates 
continue to play out in rapidly develop-
ing cities around the world today, from  
Beijing to Rio de Janeiro in Brazil, often lead-
ing to similar mistakes. 

But cities supply solutions as well as 
problems, as they are the world’s centres of 
creativity, power and wealth. So the need is 
urgent for an integrated, quantitative, pre-
dictive, science-based understanding of the 
dynamics, growth and organization of cit-
ies. To combat the multiple threats facing 
humanity, a ‘grand unified theory of sus-
tainability’ with cities and urbanization at its 

core must be developed. Such an ambitious  
programme requires major international 
commitment and dedicated transdiscipli-
nary collaboration across science, economics 
and technology, including business leaders 
and practitioners, such as planners and 
designers. Developing a predictive frame-
work applicable to cities around the world 
is a daunting task, given their extraordi-
nary complexity and diversity. However, we  
are strongly encouraged that this might  
be possible. 

UNIVERSAL FEATURES
Cities manifest remarkably universal, quan-
tifiable features. This is shown by new analy-
ses of large urban data sets, spanning several 
decades and hundreds of urban centres in 
regions and countries around the world 
from the United States and Europe to China 
and Brazil4,5. Surprisingly, size is the major 
determinant of most characteristics of a city; 
history, geography and design have second-
ary roles4,6. 

Three main characteristics vary system-
atically with population. One, the space 
required per capita shrinks, thanks to 
denser settlement and a more intense use 
of infrastructure. Two, the pace of all socio-
 economic activity accelerates, leading to 
higher productivity. And three, economic 
and social activities diversify and become 
more interdependent, resulting in new 
forms of economic specialization and cul-
tural expression.

We have recently shown that these general  
trends can be expressed as simple math-
ematical ‘laws’. For example, doubling the 
population of any city requires only about 
an 85% increase in infrastructure, whether 
that be total road surface, length of electrical 
cables, water pipes or number of petrol sta-
tions4. This systematic 15% savings happens 
because, in general, creating and operating 
the same infrastructure at higher densities 
is more efficient, more economically viable, 
and often leads to higher-quality services 
and solutions that are impossible in smaller 
places. Interestingly, there are similar savings 
in carbon footprints7,8 — most large, devel-
oped cities are ‘greener’ than their national 
average in terms of per capita carbon emis-
sions. It is as yet unclear whether this is also 
true for cities undergoing extremely rapid 
development, as in China or India, where 
data are poor or lacking. 

Similar economies of scale are found in 
organisms and communities like anthills 
and beehives, where the savings are closer 
to 20%9. Such regularities originate in the 
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At the start of the twenty-first century, 
cities emerged as the source of the 
greatest challenges that the planet 

has faced since humans became social. 
Although they have proven to be human-
ity’s engines of creativity, wealth creation 
and economic growth, cities have also been 
the source of much pollution and disease. 
Rapid urbanization and accelerating socio-
economic development have generated 
global problems from climate change and 
its environmental impacts to incipient  
crises in food, energy and water availabil-
ity, public health, financial markets and the  
global economy1,2. 

Urbanization is a relatively new global 
issue. As recently as 1950, only 30% of the 
world’s population was urbanized. Today, 
more than half live in urban centres. The 
developed world is now about 80% urban 
and this is expected to be true for the entire 
planet by around 2050, with some 2 billion 
people moving to cities, especially in China, 
India, southeast Asia and Africa2.

Cities are complex systems whose infra-
structural, economic and social components 
are strongly interrelated and therefore dif-
ficult to understand in isolation3. The many 
problems associated with urban growth and 
global sustainability, however, are typically 
treated as independent issues. This frequently 
results in ineffective policy and often leads to 

unfortunate and sometimes disastrous unin-
tended consequences. Policies meant to con-
trol population movements and the spread of 
slums in megacities, or to reverse urban decay, 
have largely proven ineffective or counterpro-
ductive, despite huge expenditure. 

In New York City in the 1970s, for example, 
a strategy of ‘planned shrinkage’ intentionally 
removed essential services from some urban 
areas — notably the Bronx — to prompt peo-
ple to move away and allow for redevelopment. 
Instead, this strategy led to increases in crime 
and general socio-economic degradation.  
In North America in the 1950s to 1970s (and 
earlier in Europe), policies of urban renewal 
intended to reduce high urban densities, 
by razing poorer old neighbourhoods and 
creating infrastructure, actually ended up 
encouraging urban sprawl3. Similar debates 
continue to play out in rapidly develop-
ing cities around the world today, from  
Beijing to Rio de Janeiro in Brazil, often lead-
ing to similar mistakes. 

But cities supply solutions as well as 
problems, as they are the world’s centres of 
creativity, power and wealth. So the need is 
urgent for an integrated, quantitative, pre-
dictive, science-based understanding of the 
dynamics, growth and organization of cit-
ies. To combat the multiple threats facing 
humanity, a ‘grand unified theory of sus-
tainability’ with cities and urbanization at its 

core must be developed. Such an ambitious  
programme requires major international 
commitment and dedicated transdiscipli-
nary collaboration across science, economics 
and technology, including business leaders 
and practitioners, such as planners and 
designers. Developing a predictive frame-
work applicable to cities around the world 
is a daunting task, given their extraordi-
nary complexity and diversity. However, we  
are strongly encouraged that this might  
be possible. 

UNIVERSAL FEATURES
Cities manifest remarkably universal, quan-
tifiable features. This is shown by new analy-
ses of large urban data sets, spanning several 
decades and hundreds of urban centres in 
regions and countries around the world 
from the United States and Europe to China 
and Brazil4,5. Surprisingly, size is the major 
determinant of most characteristics of a city; 
history, geography and design have second-
ary roles4,6. 

Three main characteristics vary system-
atically with population. One, the space 
required per capita shrinks, thanks to 
denser settlement and a more intense use 
of infrastructure. Two, the pace of all socio-
 economic activity accelerates, leading to 
higher productivity. And three, economic 
and social activities diversify and become 
more interdependent, resulting in new 
forms of economic specialization and cul-
tural expression.

We have recently shown that these general  
trends can be expressed as simple math-
ematical ‘laws’. For example, doubling the 
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At the start of the twenty-first century, 
cities emerged as the source of the 
greatest challenges that the planet 

has faced since humans became social. 
Although they have proven to be human-
ity’s engines of creativity, wealth creation 
and economic growth, cities have also been 
the source of much pollution and disease. 
Rapid urbanization and accelerating socio-
economic development have generated 
global problems from climate change and 
its environmental impacts to incipient  
crises in food, energy and water availabil-
ity, public health, financial markets and the  
global economy1,2. 

Urbanization is a relatively new global 
issue. As recently as 1950, only 30% of the 
world’s population was urbanized. Today, 
more than half live in urban centres. The 
developed world is now about 80% urban 
and this is expected to be true for the entire 
planet by around 2050, with some 2 billion 
people moving to cities, especially in China, 
India, southeast Asia and Africa2.

Cities are complex systems whose infra-
structural, economic and social components 
are strongly interrelated and therefore dif-
ficult to understand in isolation3. The many 
problems associated with urban growth and 
global sustainability, however, are typically 
treated as independent issues. This frequently 
results in ineffective policy and often leads to 

unfortunate and sometimes disastrous unin-
tended consequences. Policies meant to con-
trol population movements and the spread of 
slums in megacities, or to reverse urban decay, 
have largely proven ineffective or counterpro-
ductive, despite huge expenditure. 

In New York City in the 1970s, for example, 
a strategy of ‘planned shrinkage’ intentionally 
removed essential services from some urban 
areas — notably the Bronx — to prompt peo-
ple to move away and allow for redevelopment. 
Instead, this strategy led to increases in crime 
and general socio-economic degradation.  
In North America in the 1950s to 1970s (and 
earlier in Europe), policies of urban renewal 
intended to reduce high urban densities, 
by razing poorer old neighbourhoods and 
creating infrastructure, actually ended up 
encouraging urban sprawl3. Similar debates 
continue to play out in rapidly develop-
ing cities around the world today, from  
Beijing to Rio de Janeiro in Brazil, often lead-
ing to similar mistakes. 

But cities supply solutions as well as 
problems, as they are the world’s centres of 
creativity, power and wealth. So the need is 
urgent for an integrated, quantitative, pre-
dictive, science-based understanding of the 
dynamics, growth and organization of cit-
ies. To combat the multiple threats facing 
humanity, a ‘grand unified theory of sus-
tainability’ with cities and urbanization at its 

core must be developed. Such an ambitious  
programme requires major international 
commitment and dedicated transdiscipli-
nary collaboration across science, economics 
and technology, including business leaders 
and practitioners, such as planners and 
designers. Developing a predictive frame-
work applicable to cities around the world 
is a daunting task, given their extraordi-
nary complexity and diversity. However, we  
are strongly encouraged that this might  
be possible. 

UNIVERSAL FEATURES
Cities manifest remarkably universal, quan-
tifiable features. This is shown by new analy-
ses of large urban data sets, spanning several 
decades and hundreds of urban centres in 
regions and countries around the world 
from the United States and Europe to China 
and Brazil4,5. Surprisingly, size is the major 
determinant of most characteristics of a city; 
history, geography and design have second-
ary roles4,6. 

Three main characteristics vary system-
atically with population. One, the space 
required per capita shrinks, thanks to 
denser settlement and a more intense use 
of infrastructure. Two, the pace of all socio-
 economic activity accelerates, leading to 
higher productivity. And three, economic 
and social activities diversify and become 
more interdependent, resulting in new 
forms of economic specialization and cul-
tural expression.

We have recently shown that these general  
trends can be expressed as simple math-
ematical ‘laws’. For example, doubling the 
population of any city requires only about 
an 85% increase in infrastructure, whether 
that be total road surface, length of electrical 
cables, water pipes or number of petrol sta-
tions4. This systematic 15% savings happens 
because, in general, creating and operating 
the same infrastructure at higher densities 
is more efficient, more economically viable, 
and often leads to higher-quality services 
and solutions that are impossible in smaller 
places. Interestingly, there are similar savings 
in carbon footprints7,8 — most large, devel-
oped cities are ‘greener’ than their national 
average in terms of per capita carbon emis-
sions. It is as yet unclear whether this is also 
true for cities undergoing extremely rapid 
development, as in China or India, where 
data are poor or lacking. 

Similar economies of scale are found in 
organisms and communities like anthills 
and beehives, where the savings are closer 
to 20%9. Such regularities originate in the 
mathematical properties of the multiple 
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To illustrate this methodology and its potential impact we analyze
data from U.S. Metropolitan Statistical Areas (MSAs) (see Materials
for data sources and city definitions). These are socioeconomic units
defined via commuting flows, in contrast to more arbitrary political
divisions such as counties or administrative cities. This definition
emphasizes social interactions as the defining feature of cities. It
attempts to circumscribe the city geographically as a mixing
population where all residents can come into contact with each
other, a familiar concept in epidemiology and ecology [37].

We find that the variation in local quantities corresponding to
different cities in the same year is well characterized statistically by
a Laplace (exponential) distribution density

w(j)~(1=2s) exp ({DjD=s), ð3Þ

where s parametrizes its width, or more precisely the mean
expectation for the absolute value of SAMIs s~SDjDT. Figure 1B
shows the normalized SAMI histogram (the estimate of the SAMI
probability density function) for 360 MSAs, in good agreement
with the prediction from the Laplace distribution (red line).

Interestingly, this Laplace distribution for SAMIs implies that
the statistics of the urban indicators themselves also follow a
power-law distribution density. Substituting, the definition of
SAMIs, Eq. (2), into the Laplace distribution (3), and accounting
for the change in measure in the probability density dj~dYi=Yi,
allows us to derive the statistics of the original indicators Yi as

p(Yi)~
1

2Yis ln 10

Yi

Y (Ni)

! "{
E½Yi{Y (Ni )$

s ln 10
, ð4Þ

where the number ln 10~2:30 and the sign function e(x)~z1
for xw0 and {1 for xv0. The average value of Yi is given by the
scaling law Eq. (1). The average magnitude of the deviations from
scaling, namely the width of w(j), s, depends on the given
quantity, but is stable over long periods of time (for instance,
decades for personal income and patents). Its values are larger for
patents (s~0:42) than for violent crime (s~0:17), and significantly
larger than for economic quantities, such as income (s~0:07) or
GMP (s~0:08). Thus, these economic quantities are least sensitive

Figure 1. Urban Agglomeration effects result in per capita nonlinear scaling of urban metrics. Subtracting these effects produces a truly
local measure of urban dynamics and a reference scale for ranking cities. a) A typical superlinear scaling law (solid line): Gross Metropolitan Product of
US MSAs in 2006 (red dots) vs. population; the slope of the solid line has exponent, b = 1.126 (95% CI [1.101,1.149]). b) Histogram showing frequency
of residuals, (SAMIs, see Eq. (2)); the statistics of residuals is well described by a Laplace distribution (red line). Scale independent ranking (SAMIs) for
US MSAs by c) personal income and d) patenting (red denotes above average performance, blue below). For more details see Text S1, Table S1 and
Figure S1.
doi:10.1371/journal.pone.0013541.g001
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A possible theoretical explanation?
pipes, s0 ¼ s*b

ð1−dÞh≫sh ¼ s*: Additionally, be-
cause infrastructure must reach everyone in the city
(6, 18), total network length is area filling,
li ¼ ai=l;with ai ¼ abða−1Þi: This means that
the land area per person,ah ¼ aNa−1, and shortest
network distance, lh ¼ ða=lÞNa−1, which defines
l, decrease with N. The total network length Ln
and network area An follow from the sum of the
geometric series over levels

Ln ¼ ∑
h

i¼0
liNi ¼

a
l
∑
h

i¼0
bai

¼ a
l
baðhþ1Þ − 1
ba − 1

≃ L0Na; L0 ¼ a=l ð1Þ

An ¼ ∑
h

i¼0
siliNi

¼ s*
a
l
bð1−dÞh ∑

h

i¼0
bðaþd−1Þi ≃ A0N1−d,

A0 ¼
s*a

lð1 − baþd−1Þ
ð2Þ

where I took aþ d < 1, which holds for D > 1.
I can now compute the cost of maintaining

the city connected as the energy necessary for
moving people, goods, and information across
its infrastructure networks. Thesemovements form
a set of currents, transporting various quantities
across the city and can be quantified by means of
the language of circuits. The scaling of si together
with total current, J, conservation across levels
Ji ¼ siriviNi ¼ si−1ri−1vi−1Ni−1 ¼ Ji−1for all i,
sets the scaling for rivi; the current density at
level i, where ri is the density of carriers in the
network and vi their average velocity. This quan-
tity is interesting because it controls the dis-
sipation mechanisms in any network. I obtain
rivi ¼ b−dri−1vi−1; which implies that the cur-
rent density decreases with increasing i, so that
highways are faster and/or more densely packed
than smaller roads (27, 28). Making the ad-
ditional assumption that individual needs,
rhvh ¼ r*v*, are independent of N (12) leads
to rivi ¼ bdðh−iÞr*v*. Then, the total current Ji =
J = J0N, with J0 ¼ s*r*v*, which is a function
only of individuals’ characteristics.

There aremany forms of energy dissipation in
networks, including those that occur at large veloc-
ity or density. Here, Imake the standard assumption
that the resistance per unit length per transverse
network area, r, is constant (2, 5), leading to the
resistance per network segment, ri ¼ r li

si
: For Ni

parallel resistors this gives the total resistance per
level, Ri ¼ ri

Ni
¼ ar

ls*
b−ð1 − a þ dÞi−ð1 − dÞh. The total

power dissipated, W, follows from summing
Wi ¼ RiJ 2i over levels,

W ¼ J 2 ∑
h

i¼1
Ri

¼ J 2
ar
ls*

b−ð1−dÞh
1−b−ð1−aþdÞðhþ1Þ

1−b−1þa−d ≃W0N 1þd;

W0 ¼
arJ 20

ls*ð1−b−1þa−dÞ
ð3Þ

which scales superlinearly, with exponent 1+ d =
1+1/6 in D = 2, H = 1. Thus, energy dissipation
scales with population like social interactions, as
observed in German urban power grids (12), so
that the ratio Y/W, a measure of urban efficiency,
is independent of city size.

Finally, I show that these results can be de-
rived by maximizing net urban output, L, as the
difference between social interaction outcomes,
Y, and infrastructure energy dissipation,W, under
settlement and network constraints,

L ¼ Y −W þ l1ðeAH=D −GN=AÞ þ

l2ðAn − cNdÞ →
dL=dG¼0

2a − 1
a

G*
N 2

AnðNÞ
ð4Þ

where c ¼ A0a−1=D andl1, l2 are Lagrange mul-
tipliers. Equation 4 gives the basis for the deri-
vation of the properties of every segment in the
network, through Eqs. 1 and 2, in analogy with
(2, 4, 5). The novelty in Eq. 4 is the prediction of
an optimal G ¼ G*; through dL=dG ¼ 0; and
the expectation that values of G for different cities

fluctuate around this value, as observed in Fig. 1B
(inset).

To see this, consider that, keeping e fixed and
a ¼ ðG=eÞa, both YandW growwithG, because
Y0 eG1−a and W0 eGa. This tension between
social interactivity, transportation costs, and spatial
settlement patterns is at the root of most urban
planning and policy. The limiting values of G
follow from the solutions to L ¼ 0 : G ¼ 0 and

G=Gmax ¼ ðelÞ2a
r0J 2

0
l2ð1−aÞ

h i 1
2a−1

, wherer0 ≈ r (14). It

follows that G* ¼ 1−a
a

! "1=ð2a−1Þ
Gmax ≃Gmax=8,

witha ≃ 2=3 (Fig. 1B, inset). Thus, cities will form
if the balance of social interactions is positive,
g( > 0: However, there is an upper value of
G ¼ Gmax(Fig. 1B, inset) beyond which dissipa-
tion costs overcome social benefits and a city may
split up into regions. For G < G*; the social
interaction potential of a city is underdeveloped.
Such places tend to be poorer and have less
advanced infrastructure. Thus, I would expect that
cities such as Riverside, California, or Brownsville,
Texas (Fig. 1B), where estimates ofG are less than
average, would typically benefit from measures

Fig. 2. The spatial city and its social and dissipative processes. (A) Gray blocks denote settled areas,
and spaces in between (white, yellow, green) represent infrastructure networks, treated in terms of a size
hierarchy. Total network length Ln ¼ 2(nb + 1)L ≃ A/l is area filling (circle), where nb is the number of
blocks across the city (14). Red lines denote the volume of public space spanned by an individual, which
determines his or her average number of social interactions. As the city grows and new land is settled
(orange blocks), the infrastructure network grows incrementally (orange segments). The flux rivi in larger
network segments is higher (black dots plus arrows), controlling the energy dissipation in the city. (B)
There is an optimal value of G at which cities are most productive. Cities can exist when social interactions
are positive G > Gmin = 0, and less than an upper value G < Gmax (red circles), at which point dissipation
costs overcome benefits. The optimal G = G* (green circle) corresponds to the most efficient city.
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“The origins of scaling in cities”
Luís M. A. Bettencourt,
Science, 340, 1438–1441, 2013. [3]
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Non-simple scaling for death:

Statistical Signs of Social Influence on
Suicides
Hygor Piaget M. Melo1, André A. Moreira1, Élcio Batista2, Hernán A. Makse3 & José S. Andrade, Jr.1

1Departamento de Fı́sica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil, 2Laboratório de Estudos da
Violência - LEV, Universidade Federal do Ceará, 60020-181 Fortaleza, Ceará, Brazil, 3Levich Institute and Physics Department, City
College of New York, New York, NY 10031, USA.

By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the
connections between people and society. Under the same framework, he considered that crime is bound up
with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been
previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the
population of a Brazilian city results in an average increment of 135% in the number of homicides, rather
than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes.
Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from
homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior
between the number of suicides and city population, with allometric power-law exponents, b 5 0.84 6 0.02
and 0.87 6 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the
Metropolitan Statistical Areas (MSAs), we obtain b 5 0.88 6 0.01.

I
t is not uncommon in nature to observe properties that present non-trivial forms of scale dependence. This is
the case, for instance, of critical phenomena, where scaling invariance, universal properties and renormaliza-
tion concepts constitute the theoretical framework of a well-established field in physics4. In biology, the so-

called allometric relations certainly represent outstanding examples of natural scaling laws. Precisely, allometry
implies the use of power-laws, Y / Mb, to describe the dependence of a wide range of anatomical, physiological
and behavioral properties, denoted here as Y, on the size or the body mass of different animal species, M. If the
scaling exponent is b 5 1, the variables Y and M are trivially proportional, and the relation between them is said to
be isometric, while b ? 1 indicates an allometric type of relationship. The so-called ‘‘three-quarters law’’ or
Kleiber’s law, as originally proposed by the agricultural biologist Max Kleiber in 19475, is surely one of the most
prominent allometric relations found in natural sciences. Based on an extensive set of experimental data, this
fundamental law states that the metabolic rate of all animals should scale to the 3/4 power of their corresponding
masses6,7.

In analogy with biological scaling laws, Bettencourt et al.2 showed that, regardless the enormous complexity
and diversity of human behavior and the extraordinary geographic variability of urban settlements, cities belong-
ing to the same urban system obey pervasive allometric relations with population size, therefore exhibiting
nonextensive rates of innovation, wealth creation, patterns of consumption, human social behavior, and several
other properties related to the urban infrastructure. The authors then conclude that all data can be grouped into
three categories, namely, material infrastructure, individual human needs, and patterns of social activity. Despite
the unambiguous presence of power-laws, the urban indicators do not necessarily follow a universal behavior.
Instead the results can be divided in three different classes. The isometric (linear) case (b 5 1) typically reflects the
scaling of individual human needs, like the number of jobs, houses, and water consumption. As in biology, the
allometric sublinear behavior (b , 1) implies an economy of scale in the quantity of interest, because its per capita
measurement decreases with population size. In the case of cities, this is materialized, for example, in the number
of gasoline stations, the total length of electrical cables, and the road surface (material and infrastructure). The
case of superlinear allometry (b . 1) in urban indicators emerges whenever the complex patterns of social activity
have significant influence. Wages, income, growth domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors, all display a superlinear increase with population
size2. While these results indicate that larger cities are associated with higher levels of human productivity and
quality of life, superlinear scaling can also characterize negative urban scenarios, such as the prospect of living
costs, crime rates, pollution and disease incidence2,3,8–10.
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By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the
connections between people and society. Under the same framework, he considered that crime is bound up
with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been
previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the
population of a Brazilian city results in an average increment of 135% in the number of homicides, rather
than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes.
Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from
homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior
between the number of suicides and city population, with allometric power-law exponents, b 5 0.84 6 0.02
and 0.87 6 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the
Metropolitan Statistical Areas (MSAs), we obtain b 5 0.88 6 0.01.

I
t is not uncommon in nature to observe properties that present non-trivial forms of scale dependence. This is
the case, for instance, of critical phenomena, where scaling invariance, universal properties and renormaliza-
tion concepts constitute the theoretical framework of a well-established field in physics4. In biology, the so-

called allometric relations certainly represent outstanding examples of natural scaling laws. Precisely, allometry
implies the use of power-laws, Y / Mb, to describe the dependence of a wide range of anatomical, physiological
and behavioral properties, denoted here as Y, on the size or the body mass of different animal species, M. If the
scaling exponent is b 5 1, the variables Y and M are trivially proportional, and the relation between them is said to
be isometric, while b ? 1 indicates an allometric type of relationship. The so-called ‘‘three-quarters law’’ or
Kleiber’s law, as originally proposed by the agricultural biologist Max Kleiber in 19475, is surely one of the most
prominent allometric relations found in natural sciences. Based on an extensive set of experimental data, this
fundamental law states that the metabolic rate of all animals should scale to the 3/4 power of their corresponding
masses6,7.

In analogy with biological scaling laws, Bettencourt et al.2 showed that, regardless the enormous complexity
and diversity of human behavior and the extraordinary geographic variability of urban settlements, cities belong-
ing to the same urban system obey pervasive allometric relations with population size, therefore exhibiting
nonextensive rates of innovation, wealth creation, patterns of consumption, human social behavior, and several
other properties related to the urban infrastructure. The authors then conclude that all data can be grouped into
three categories, namely, material infrastructure, individual human needs, and patterns of social activity. Despite
the unambiguous presence of power-laws, the urban indicators do not necessarily follow a universal behavior.
Instead the results can be divided in three different classes. The isometric (linear) case (b 5 1) typically reflects the
scaling of individual human needs, like the number of jobs, houses, and water consumption. As in biology, the
allometric sublinear behavior (b , 1) implies an economy of scale in the quantity of interest, because its per capita
measurement decreases with population size. In the case of cities, this is materialized, for example, in the number
of gasoline stations, the total length of electrical cables, and the road surface (material and infrastructure). The
case of superlinear allometry (b . 1) in urban indicators emerges whenever the complex patterns of social activity
have significant influence. Wages, income, growth domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors, all display a superlinear increase with population
size2. While these results indicate that larger cities are associated with higher levels of human productivity and
quality of life, superlinear scaling can also characterize negative urban scenarios, such as the prospect of living
costs, crime rates, pollution and disease incidence2,3,8–10.
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By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the
connections between people and society. Under the same framework, he considered that crime is bound up
with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been
previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the
population of a Brazilian city results in an average increment of 135% in the number of homicides, rather
than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes.
Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from
homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior
between the number of suicides and city population, with allometric power-law exponents, b 5 0.84 6 0.02
and 0.87 6 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the
Metropolitan Statistical Areas (MSAs), we obtain b 5 0.88 6 0.01.

I
t is not uncommon in nature to observe properties that present non-trivial forms of scale dependence. This is
the case, for instance, of critical phenomena, where scaling invariance, universal properties and renormaliza-
tion concepts constitute the theoretical framework of a well-established field in physics4. In biology, the so-

called allometric relations certainly represent outstanding examples of natural scaling laws. Precisely, allometry
implies the use of power-laws, Y / Mb, to describe the dependence of a wide range of anatomical, physiological
and behavioral properties, denoted here as Y, on the size or the body mass of different animal species, M. If the
scaling exponent is b 5 1, the variables Y and M are trivially proportional, and the relation between them is said to
be isometric, while b ? 1 indicates an allometric type of relationship. The so-called ‘‘three-quarters law’’ or
Kleiber’s law, as originally proposed by the agricultural biologist Max Kleiber in 19475, is surely one of the most
prominent allometric relations found in natural sciences. Based on an extensive set of experimental data, this
fundamental law states that the metabolic rate of all animals should scale to the 3/4 power of their corresponding
masses6,7.

In analogy with biological scaling laws, Bettencourt et al.2 showed that, regardless the enormous complexity
and diversity of human behavior and the extraordinary geographic variability of urban settlements, cities belong-
ing to the same urban system obey pervasive allometric relations with population size, therefore exhibiting
nonextensive rates of innovation, wealth creation, patterns of consumption, human social behavior, and several
other properties related to the urban infrastructure. The authors then conclude that all data can be grouped into
three categories, namely, material infrastructure, individual human needs, and patterns of social activity. Despite
the unambiguous presence of power-laws, the urban indicators do not necessarily follow a universal behavior.
Instead the results can be divided in three different classes. The isometric (linear) case (b 5 1) typically reflects the
scaling of individual human needs, like the number of jobs, houses, and water consumption. As in biology, the
allometric sublinear behavior (b , 1) implies an economy of scale in the quantity of interest, because its per capita
measurement decreases with population size. In the case of cities, this is materialized, for example, in the number
of gasoline stations, the total length of electrical cables, and the road surface (material and infrastructure). The
case of superlinear allometry (b . 1) in urban indicators emerges whenever the complex patterns of social activity
have significant influence. Wages, income, growth domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors, all display a superlinear increase with population
size2. While these results indicate that larger cities are associated with higher levels of human productivity and
quality of life, superlinear scaling can also characterize negative urban scenarios, such as the prospect of living
costs, crime rates, pollution and disease incidence2,3,8–10.
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By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the
connections between people and society. Under the same framework, he considered that crime is bound up
with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been
previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the
population of a Brazilian city results in an average increment of 135% in the number of homicides, rather
than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes.
Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from
homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior
between the number of suicides and city population, with allometric power-law exponents, b 5 0.84 6 0.02
and 0.87 6 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the
Metropolitan Statistical Areas (MSAs), we obtain b 5 0.88 6 0.01.

I
t is not uncommon in nature to observe properties that present non-trivial forms of scale dependence. This is
the case, for instance, of critical phenomena, where scaling invariance, universal properties and renormaliza-
tion concepts constitute the theoretical framework of a well-established field in physics4. In biology, the so-

called allometric relations certainly represent outstanding examples of natural scaling laws. Precisely, allometry
implies the use of power-laws, Y / Mb, to describe the dependence of a wide range of anatomical, physiological
and behavioral properties, denoted here as Y, on the size or the body mass of different animal species, M. If the
scaling exponent is b 5 1, the variables Y and M are trivially proportional, and the relation between them is said to
be isometric, while b ? 1 indicates an allometric type of relationship. The so-called ‘‘three-quarters law’’ or
Kleiber’s law, as originally proposed by the agricultural biologist Max Kleiber in 19475, is surely one of the most
prominent allometric relations found in natural sciences. Based on an extensive set of experimental data, this
fundamental law states that the metabolic rate of all animals should scale to the 3/4 power of their corresponding
masses6,7.

In analogy with biological scaling laws, Bettencourt et al.2 showed that, regardless the enormous complexity
and diversity of human behavior and the extraordinary geographic variability of urban settlements, cities belong-
ing to the same urban system obey pervasive allometric relations with population size, therefore exhibiting
nonextensive rates of innovation, wealth creation, patterns of consumption, human social behavior, and several
other properties related to the urban infrastructure. The authors then conclude that all data can be grouped into
three categories, namely, material infrastructure, individual human needs, and patterns of social activity. Despite
the unambiguous presence of power-laws, the urban indicators do not necessarily follow a universal behavior.
Instead the results can be divided in three different classes. The isometric (linear) case (b 5 1) typically reflects the
scaling of individual human needs, like the number of jobs, houses, and water consumption. As in biology, the
allometric sublinear behavior (b , 1) implies an economy of scale in the quantity of interest, because its per capita
measurement decreases with population size. In the case of cities, this is materialized, for example, in the number
of gasoline stations, the total length of electrical cables, and the road surface (material and infrastructure). The
case of superlinear allometry (b . 1) in urban indicators emerges whenever the complex patterns of social activity
have significant influence. Wages, income, growth domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors, all display a superlinear increase with population
size2. While these results indicate that larger cities are associated with higher levels of human productivity and
quality of life, superlinear scaling can also characterize negative urban scenarios, such as the prospect of living
costs, crime rates, pollution and disease incidence2,3,8–10.
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By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the
connections between people and society. Under the same framework, he considered that crime is bound up
with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been
previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the
population of a Brazilian city results in an average increment of 135% in the number of homicides, rather
than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes.
Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from
homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior
between the number of suicides and city population, with allometric power-law exponents, b 5 0.84 6 0.02
and 0.87 6 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the
Metropolitan Statistical Areas (MSAs), we obtain b 5 0.88 6 0.01.

I
t is not uncommon in nature to observe properties that present non-trivial forms of scale dependence. This is
the case, for instance, of critical phenomena, where scaling invariance, universal properties and renormaliza-
tion concepts constitute the theoretical framework of a well-established field in physics4. In biology, the so-

called allometric relations certainly represent outstanding examples of natural scaling laws. Precisely, allometry
implies the use of power-laws, Y / Mb, to describe the dependence of a wide range of anatomical, physiological
and behavioral properties, denoted here as Y, on the size or the body mass of different animal species, M. If the
scaling exponent is b 5 1, the variables Y and M are trivially proportional, and the relation between them is said to
be isometric, while b ? 1 indicates an allometric type of relationship. The so-called ‘‘three-quarters law’’ or
Kleiber’s law, as originally proposed by the agricultural biologist Max Kleiber in 19475, is surely one of the most
prominent allometric relations found in natural sciences. Based on an extensive set of experimental data, this
fundamental law states that the metabolic rate of all animals should scale to the 3/4 power of their corresponding
masses6,7.

In analogy with biological scaling laws, Bettencourt et al.2 showed that, regardless the enormous complexity
and diversity of human behavior and the extraordinary geographic variability of urban settlements, cities belong-
ing to the same urban system obey pervasive allometric relations with population size, therefore exhibiting
nonextensive rates of innovation, wealth creation, patterns of consumption, human social behavior, and several
other properties related to the urban infrastructure. The authors then conclude that all data can be grouped into
three categories, namely, material infrastructure, individual human needs, and patterns of social activity. Despite
the unambiguous presence of power-laws, the urban indicators do not necessarily follow a universal behavior.
Instead the results can be divided in three different classes. The isometric (linear) case (b 5 1) typically reflects the
scaling of individual human needs, like the number of jobs, houses, and water consumption. As in biology, the
allometric sublinear behavior (b , 1) implies an economy of scale in the quantity of interest, because its per capita
measurement decreases with population size. In the case of cities, this is materialized, for example, in the number
of gasoline stations, the total length of electrical cables, and the road surface (material and infrastructure). The
case of superlinear allometry (b . 1) in urban indicators emerges whenever the complex patterns of social activity
have significant influence. Wages, income, growth domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors, all display a superlinear increase with population
size2. While these results indicate that larger cities are associated with higher levels of human productivity and
quality of life, superlinear scaling can also characterize negative urban scenarios, such as the prospect of living
costs, crime rates, pollution and disease incidence2,3,8–10.
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By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the
connections between people and society. Under the same framework, he considered that crime is bound up
with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been
previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the
population of a Brazilian city results in an average increment of 135% in the number of homicides, rather
than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes.
Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from
homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior
between the number of suicides and city population, with allometric power-law exponents, b 5 0.84 6 0.02
and 0.87 6 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the
Metropolitan Statistical Areas (MSAs), we obtain b 5 0.88 6 0.01.

I
t is not uncommon in nature to observe properties that present non-trivial forms of scale dependence. This is
the case, for instance, of critical phenomena, where scaling invariance, universal properties and renormaliza-
tion concepts constitute the theoretical framework of a well-established field in physics4. In biology, the so-

called allometric relations certainly represent outstanding examples of natural scaling laws. Precisely, allometry
implies the use of power-laws, Y / Mb, to describe the dependence of a wide range of anatomical, physiological
and behavioral properties, denoted here as Y, on the size or the body mass of different animal species, M. If the
scaling exponent is b 5 1, the variables Y and M are trivially proportional, and the relation between them is said to
be isometric, while b ? 1 indicates an allometric type of relationship. The so-called ‘‘three-quarters law’’ or
Kleiber’s law, as originally proposed by the agricultural biologist Max Kleiber in 19475, is surely one of the most
prominent allometric relations found in natural sciences. Based on an extensive set of experimental data, this
fundamental law states that the metabolic rate of all animals should scale to the 3/4 power of their corresponding
masses6,7.

In analogy with biological scaling laws, Bettencourt et al.2 showed that, regardless the enormous complexity
and diversity of human behavior and the extraordinary geographic variability of urban settlements, cities belong-
ing to the same urban system obey pervasive allometric relations with population size, therefore exhibiting
nonextensive rates of innovation, wealth creation, patterns of consumption, human social behavior, and several
other properties related to the urban infrastructure. The authors then conclude that all data can be grouped into
three categories, namely, material infrastructure, individual human needs, and patterns of social activity. Despite
the unambiguous presence of power-laws, the urban indicators do not necessarily follow a universal behavior.
Instead the results can be divided in three different classes. The isometric (linear) case (b 5 1) typically reflects the
scaling of individual human needs, like the number of jobs, houses, and water consumption. As in biology, the
allometric sublinear behavior (b , 1) implies an economy of scale in the quantity of interest, because its per capita
measurement decreases with population size. In the case of cities, this is materialized, for example, in the number
of gasoline stations, the total length of electrical cables, and the road surface (material and infrastructure). The
case of superlinear allometry (b . 1) in urban indicators emerges whenever the complex patterns of social activity
have significant influence. Wages, income, growth domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors, all display a superlinear increase with population
size2. While these results indicate that larger cities are associated with higher levels of human productivity and
quality of life, superlinear scaling can also characterize negative urban scenarios, such as the prospect of living
costs, crime rates, pollution and disease incidence2,3,8–10.
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Scientific Reports, 4, 6239, 2014. [27]

 Bettencourt et al.’s initial work suggested social
phenomena would follow superlinear scaling
(wealth, crime, disease)

 Homicide, traffic, and suicide [10] all tied to social
context in complex, different ways.

 For cities in Brazil, Melo et al. show:
 Homicide appears to follow superlinear scaling

(𝛽 = 1.24 ± 0.01)
 Traffic accident deaths appear to follow linear

scaling (𝛽 = 0.99 ± 0.02)
 Suicide appears to follow sublinear scaling.

(𝛽 = 0.84 ± 0.02)

https://pdodds.w3.uvm.edu//research/papers/others/everything/melo2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/melo2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/melo2014a.pdf


Methods
Brazilian Data. We analyzed data available for all Brazilian cities from 1992 to 2009,
made freely available by the Brazil’s public healthcare system DATASUS11. Here we
consider that cities are the smallest administrative units with local government. The
data consist of the number of homicides, suicides, and deaths in traffic accidents as
well as the population for each city.

US Data. We used data from the National Cancer Institute SEER, Surveillance
Epidemiology and End Results downloaded from http://seer.cancer.gov/data/. The
Institute provides mortality data aggregated for three or five years. To compare with
Brazil, we use suicide mortality data for each American county and MSA
(Metropolitan Statistical Area) accumulated through the five years of 2003 to 2007.
Since the population is almost constant for a five years period, we adopted the average
population as a measurement for the population on the allometry relation.

Exponent Determination. In order to reduce fluctuations, we first apply a non-
parametric fitting method to the data, namely, the Nadaraya-Watson kernel
regression17,18. We also compute the 95% (a 5 0.05) confidence interval (CI) by the
so-called a/2 quantile function over 300 random bootstrapping samples. The power-
law exponent is calculated by performing an ordinary least square (OLS) fitting19 over
the results of the Nadaraya-Watson kernel regression in the population interval [104,
106] for Brazilian cities, and [105, 107] for American MSAs.

Results
Allometry in Urban Indicators. The main goal here is to investigate
the scaling behavior with city population of three urban indicators,
namely the number of homicides, deaths in traffic accidents and
suicides. For this, we analyzed data available for all Brazilian cities
as well as suicide for US counties and MSAs, as presented previously

Figure 1 | Scaling relations for homicides, traffic accidents, and suicides for the year of 2009 in Brazil. The small circles show the total number of deaths
by (a) homicides (red), (b) traffic accidents (blue), and (c) suicides (green) vs the population of each city. Each graph represents only one urban indicator,
and the solid gray line indicate the best fit for a power-law relation, using OLS regression, between the average total number of deaths and the city size
(population). To reduce the fluctuations we also performed a Nadaraya-Watson kernel regression17,18. The dashed lines show the 95% confidence band for
the Nadaraya-Watson kernel regression. The ordinary least-squares (OLS)19 fit to the Nadaraya-Watson kernel regression applied to the data on
homicides in (a) reveals an allometric exponent b 5 1.24 6 0.01, with a 95% confidence interval estimated by bootstrap. This is compatible with previous
results obtained for U.S.2 that also indicate a super-linear scaling relation with population and an exponent b 5 1.16. Using the same procedure, we find
b 5 0.99 6 0.02 and 0.84 6 0.02 for the numbers of deaths in traffic accidents (b) and suicides (c), respectively. The values of the Pearson correlation
coefficients r associated with these scaling relations are shown in each plot. This non-linear behavior observed for homicides and suicides certainly reflects
the complexity of human social relations and strongly suggests that the the topology of the social network plays an important role on the rate of these
events. (d) The solid lines show the Nadaraya-Watson kernel regression rate of deaths (total number of deaths divided by the population of a city) for each
urban indicator, namely, homicides (red), traffic accidents (blue), and suicides (green). The dashed lines represent the 95% confidence bands. While the
rate of fatal traffic accidents remains approximately invariant, the rate of homicides systematically increases, and the rate of suicides decreases with
population.
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Figure 2 | Temporal evolution of allometric exponent b for homicides
(red squares), deaths in traffic accidents (blue circles), and suicides (green
diamonds). Time evolution of the power-law exponent b for each
behavioral urban indicator in Brazil from 1992 to 2009. We can see that the
non-linear behavior for homicides and suicides are robust for this 19 years
period, and for the traffic accidents the exponent remain close to 1.0.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6239 | DOI: 10.1038/srep06239 2



The PoCSverse
Scaling
75 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Dynamics (Brazil):
Methods
Brazilian Data. We analyzed data available for all Brazilian cities from 1992 to 2009,
made freely available by the Brazil’s public healthcare system DATASUS11. Here we
consider that cities are the smallest administrative units with local government. The
data consist of the number of homicides, suicides, and deaths in traffic accidents as
well as the population for each city.

US Data. We used data from the National Cancer Institute SEER, Surveillance
Epidemiology and End Results downloaded from http://seer.cancer.gov/data/. The
Institute provides mortality data aggregated for three or five years. To compare with
Brazil, we use suicide mortality data for each American county and MSA
(Metropolitan Statistical Area) accumulated through the five years of 2003 to 2007.
Since the population is almost constant for a five years period, we adopted the average
population as a measurement for the population on the allometry relation.

Exponent Determination. In order to reduce fluctuations, we first apply a non-
parametric fitting method to the data, namely, the Nadaraya-Watson kernel
regression17,18. We also compute the 95% (a 5 0.05) confidence interval (CI) by the
so-called a/2 quantile function over 300 random bootstrapping samples. The power-
law exponent is calculated by performing an ordinary least square (OLS) fitting19 over
the results of the Nadaraya-Watson kernel regression in the population interval [104,
106] for Brazilian cities, and [105, 107] for American MSAs.

Results
Allometry in Urban Indicators. The main goal here is to investigate
the scaling behavior with city population of three urban indicators,
namely the number of homicides, deaths in traffic accidents and
suicides. For this, we analyzed data available for all Brazilian cities
as well as suicide for US counties and MSAs, as presented previously

Figure 1 | Scaling relations for homicides, traffic accidents, and suicides for the year of 2009 in Brazil. The small circles show the total number of deaths
by (a) homicides (red), (b) traffic accidents (blue), and (c) suicides (green) vs the population of each city. Each graph represents only one urban indicator,
and the solid gray line indicate the best fit for a power-law relation, using OLS regression, between the average total number of deaths and the city size
(population). To reduce the fluctuations we also performed a Nadaraya-Watson kernel regression17,18. The dashed lines show the 95% confidence band for
the Nadaraya-Watson kernel regression. The ordinary least-squares (OLS)19 fit to the Nadaraya-Watson kernel regression applied to the data on
homicides in (a) reveals an allometric exponent b 5 1.24 6 0.01, with a 95% confidence interval estimated by bootstrap. This is compatible with previous
results obtained for U.S.2 that also indicate a super-linear scaling relation with population and an exponent b 5 1.16. Using the same procedure, we find
b 5 0.99 6 0.02 and 0.84 6 0.02 for the numbers of deaths in traffic accidents (b) and suicides (c), respectively. The values of the Pearson correlation
coefficients r associated with these scaling relations are shown in each plot. This non-linear behavior observed for homicides and suicides certainly reflects
the complexity of human social relations and strongly suggests that the the topology of the social network plays an important role on the rate of these
events. (d) The solid lines show the Nadaraya-Watson kernel regression rate of deaths (total number of deaths divided by the population of a city) for each
urban indicator, namely, homicides (red), traffic accidents (blue), and suicides (green). The dashed lines represent the 95% confidence bands. While the
rate of fatal traffic accidents remains approximately invariant, the rate of homicides systematically increases, and the rate of suicides decreases with
population.
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Figure 2 | Temporal evolution of allometric exponent b for homicides
(red squares), deaths in traffic accidents (blue circles), and suicides (green
diamonds). Time evolution of the power-law exponent b for each
behavioral urban indicator in Brazil from 1992 to 2009. We can see that the
non-linear behavior for homicides and suicides are robust for this 19 years
period, and for the traffic accidents the exponent remain close to 1.0.
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US data:

on Materials and Methods. For 2009 in Brazil, as shown in Fig. 1, the
increase in the number of casualties D with city population P for the
three death causes can be properly described in terms of power-laws,
D 5 D0Pb, where D0 is a costant pre-factor, and the exponent b
reflects a global property at play across the urban system.
Interestingly, while the number of deaths by traffic accidents
display isometric scaling, b < 1, homicides and suicides are both
allometric, but obeying superlinear and sublinear scaling with
population, respectively. These results suggest that the decision to
commit a crime or to suicide, instead of being purely a consequence
of individual choices, might have strong correlations with the
underlying complex social organization and interactions. This does
not seem to be the case of traffic accidents, since the strong evidence
for isometric scaling, b 5 0.99 6 0.02, indicates that such events
should result from random processes, i.e., no social relations need to
be implied among the involved people.

From the superlinear scaling exponent found for the number of
homicides in Brazil at the year 2009, b 5 1.24 6 0.01, one should
expect that, by doubling the population of a city, the number of
homicides would grow approximately by a factor of 135% in average,

instead of just growing 100%, as if we had an isometric scaling. This
super-linear behavior is consistent with that found for serious crimes
in USA2. The result obtained for suicide scaling seems quite surpris-
ing. As depicted in Fig. 1c, the number of suicides scales with the
population size as a power law with exponent b 5 0.84 6 0.02, which
implies an ‘‘economy of scale’’ of 22% in comparison with isometric
scaling, similar to Kleiber’s law for metabolic rates and animal
masses. This sublinear behaviour is reminiscent of the seminal study
by Émile Durheim1, one of the fathers of modern sociology. In his
book Suicide, Durkheim explored the differences in average suicide
rates among Protestants and Catholics, arguing that stronger social
control among Catholics leads to lower suicide rates. The crucial
contribution from Durkheim was certainly to treat the suicide as a
social fact, by explaining variations in its rate at a macro level as a
direct consequence of society-scale phenomena, such as lack of con-
nections between people (group attachment) and lack of regulations
of behavior, rather than individuals’ feelings and motivations.

The discrepancies observed in the scaling behaviors of homicides,
deaths in traffic accidents and suicides become even more evident if
we plot the average number of deaths per capita against city popu-
lation, as shown in Fig. 1d. Under this framework, the systematic
decrease in suicide rate with population indicates that a large supply
of potential social contacts and interactions might work as an ‘‘anti-
dote’’ for this tragic event. This result is consistent with the idea that
human happiness is more a collective phenomenon than a con-
sequence of individual well-being conditions. In analogy with health,
it is then possible to consider a ‘‘happiness epidemy’’ spreading in a
social network12. In Fig. 2 we show the dependence on time of the
exponent b for a period of 18 years, from 1992 to 2009. We see a
robust behavior for b, in such a way that , for different years, we still
observe b . 1.0 for homicides, b , 1.0 for suicides, and b slightly
above 1.0 for deaths by traffic accidents.

We also analyzed data available for suicides in all US counties and
MSAs. The data is an accumulation of the total number of suicides
during a period of five years, from 2003 to 2007. In Figs. 3a and 3b we
show the dependence of the total number of suicides during these five
years on the average population for each county and MSA, respectively.
As depicted, the number of suicides also scales with a sub-linear power
law with exponent b 5 0.87 6 0.01 for counties, and b 5 0.88 6 0.01
for MSAs, which are in agreement with our previous results for Brazil.

In Fig. 4 we show the countour plot for the conditional probability
of the rate of fatality, given a population size. In order to obtain the
approximate density, we perform a kernel-density estimation over
the sample of all Brazilian cities in 2009. The lines in Fig. 4 indicate
the limits below which 10%, 50% and 90% of the data points are
located. Besides confirming the superlinear, linear, and sublinear
behaviors, these results also show how the probability distribution
of rates of fatality varies with the population size. Also, the 10% and
90% lines are representative of expected extreme cases of low and
high fatalities, respectively.

Discussion
Allometric relations are ubiquitous in Nature, appearing in a wide
variety of biological, sociological, chemical and physical systems2,4,13.
Even the arrangement of Lego pieces has been recently reported to
obey a sublinear scaling between the number of pieces types vs. the
total number of pieces for many Lego sets14. As originally proposed in
biology by Kleiber5 and extended later by others13, a single power law
comprising 27 orders of magnitude can associate the metabolisms of
a microscopical bacteria and a blue whale, weighting a few picograms
and more than 100 t, respectively. Unlike allometric relations in
Biology, few attempts have been made to explain the origin of uni-
versal scaling laws describing urban indicators. In a recent study15, a
quantitative framework has been developed to consider the interac-
tions between people over a social network that is capable to predict
the allometric scaling for urban systems.

Figure 3 | Scaling relationship between suicides and population for US
counties and MSAs. The small circles show the total number of suicides
over five years (2003 to 2007) vs the average population for counties (a)
and MSAs (b). The solid gray line indicate the best fit of a power law, using
OLS regression, between the average total number of suicides and
population. The dashed black lines delimit the 95% confidence band given
by the Nadaraya-Watson kernel regression (solid black line)17,18. The
allometric exponents are obtained through an ordinary least-squares
(OLS) fit19 over the Nadaraya-Watson kernel regression applied to the
suicides data. The values of the Pearson correlation coefficients r
associated with these scaling relations are shown in each plot. We find b 5
0.87 6 0.01 for counties and b 5 0.88 6 0.01 for MSAs with a 95%
confidence interval estimated by bootstrap. The insets in each graph show
the systematic decreases of suicide rates with population in both cases.
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Density of public and private facilities:
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density ρ for ambulatory
hospitals in the US. (B) D versus ρ for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around ρ ∼ 100/km2. The
region above 100/km2 of population density shows the exponent as ≈1, and
the region below 100/km2 shows 2/3. The population density 100/km2 corre-
sponds to the cross-over point of the facility density 0.03/km2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ≈3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.

Voronoi cell. However, due to the resolution limitation of the facil-
ity positions, we measure the scaling relation by using the number
of people and facilities of each county instead as a coarse-grained
scheme (see the Materials and Methods for details). From an analy-
sis of the data, it was found in both the US and SK that although
the commercial facilities tend to have an exponent α ≈ 1, the pub-
lic facilities commonly have an exponent α ≈ 2/3. For commercial
facilities such as ambulatory hospitals, the exponent α was found
to be 1.13 (top), for public facilities such as schools, the exponent
was 0.69 (bottom), as shown in Fig. 1. The other results for various
facilities in US and SK are summarized in Table 1.

Interestingly, as a border of exponent 0.8 in Table 1, each facility
is clearly classified into 2 categories, commercial and public. In the
US data, ‘ambulatory hospital,’ ‘beauty care,’ ‘laundry,’ ‘automo-
tive repair,’ ‘private school,’ ‘restaurant,’ ‘accommodation,’ ‘bank,’
and ‘gas station’ are categorized as commercial facilities more
or less, whereas ‘death care,’ ‘fire station,’ ‘police station,’ and
‘public school’ are categorized as public facilities, which provide

social welfare services. Even though the 2 countries have very
different physical, economic, sociocultural, and political environ-
ments, (such as different topography, urban formations, popula-
tion densities, standards of living, and cultures), similar facilities,
like the ambulatory hospital in the US and the primary clinic in
SK, have similar exponents.

It should be noted, however, that due to the differences in the
educational systems in the US and SK, the result-related school
system is somewhat different. Because the US has a K-12 educa-
tional system both in the public and private sectors, the table shows
the exponent 0.95 for private schools and 0.69 for public schools. In
SK, even though there is a distinction between public and private
schools, this distinction is deceptive, as most students are allocated
to public and private schools by the ministry of education without
any preference between private and public school. Therefore, the
exponent of primary and secondary schools in SK is the same, 0.77,
close to the public facilities and proving no distinction between pri-
vate and public schools in SK. However, ‘university/college,’ which
is a more profit-driven type of school in SK shows α ∼ 0.93, close
to the commercial facility.

As a result, the social facilities, such as police and fire stations
and government offices, have respectively low exponents close
to 2/3. One of major differences between public and commer-
cial facilities is probably the distance between these facilities and
their clients. This is especially the case with respect to social facili-
ties. For example, fire stations need to be located close to people’s
residences, so that fire fighters can serve quickly if needed, and
the same applies to police stations. For a school student, the com-
mute distance is also important. As an extreme case, public health

Table 1. Summary of the exponents

US facility α (SE) R2

Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility α (SE) R2

Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of α in D ∼ ρα for various facilities in the US and
SK. The coefficient of determination R2 is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are
the standard errors in the last digits.

Um et al. PNAS August 25, 2009 vol. 106 no. 34 14237
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Fig. 1. Scatter plots of population and facility density obtained from empir-
ical data. (A) Facility density D versus population density ρ for ambulatory
hospitals in the US. (B) D versus ρ for the public schools in the US. For ambula-
tory hospital the exponent is 1.13 close to 1, which shows clearly a different
distribution from the exponent 0.69 for public schools. The public school
shows roughly 2 regimes of different exponents around ρ ∼ 100/km2. The
region above 100/km2 of population density shows the exponent as ≈1, and
the region below 100/km2 shows 2/3. The population density 100/km2 corre-
sponds to the cross-over point of the facility density 0.03/km2, which means
that 1 school covers about 33 km2. If we assume the geometry is nearly a
circle, the radius of the attending distance is ≈3 km. For attending distances
<3 km, public school distribution also shows similar behaviors to those of the
private schools.

Voronoi cell. However, due to the resolution limitation of the facil-
ity positions, we measure the scaling relation by using the number
of people and facilities of each county instead as a coarse-grained
scheme (see the Materials and Methods for details). From an analy-
sis of the data, it was found in both the US and SK that although
the commercial facilities tend to have an exponent α ≈ 1, the pub-
lic facilities commonly have an exponent α ≈ 2/3. For commercial
facilities such as ambulatory hospitals, the exponent α was found
to be 1.13 (top), for public facilities such as schools, the exponent
was 0.69 (bottom), as shown in Fig. 1. The other results for various
facilities in US and SK are summarized in Table 1.

Interestingly, as a border of exponent 0.8 in Table 1, each facility
is clearly classified into 2 categories, commercial and public. In the
US data, ‘ambulatory hospital,’ ‘beauty care,’ ‘laundry,’ ‘automo-
tive repair,’ ‘private school,’ ‘restaurant,’ ‘accommodation,’ ‘bank,’
and ‘gas station’ are categorized as commercial facilities more
or less, whereas ‘death care,’ ‘fire station,’ ‘police station,’ and
‘public school’ are categorized as public facilities, which provide

social welfare services. Even though the 2 countries have very
different physical, economic, sociocultural, and political environ-
ments, (such as different topography, urban formations, popula-
tion densities, standards of living, and cultures), similar facilities,
like the ambulatory hospital in the US and the primary clinic in
SK, have similar exponents.

It should be noted, however, that due to the differences in the
educational systems in the US and SK, the result-related school
system is somewhat different. Because the US has a K-12 educa-
tional system both in the public and private sectors, the table shows
the exponent 0.95 for private schools and 0.69 for public schools. In
SK, even though there is a distinction between public and private
schools, this distinction is deceptive, as most students are allocated
to public and private schools by the ministry of education without
any preference between private and public school. Therefore, the
exponent of primary and secondary schools in SK is the same, 0.77,
close to the public facilities and proving no distinction between pri-
vate and public schools in SK. However, ‘university/college,’ which
is a more profit-driven type of school in SK shows α ∼ 0.93, close
to the commercial facility.

As a result, the social facilities, such as police and fire stations
and government offices, have respectively low exponents close
to 2/3. One of major differences between public and commer-
cial facilities is probably the distance between these facilities and
their clients. This is especially the case with respect to social facili-
ties. For example, fire stations need to be located close to people’s
residences, so that fire fighters can serve quickly if needed, and
the same applies to police stations. For a school student, the com-
mute distance is also important. As an extreme case, public health

Table 1. Summary of the exponents

US facility α (SE) R2

Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94

Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility α (SE) R2

Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90

* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Summary of the values of α in D ∼ ρα for various facilities in the US and
SK. The coefficient of determination R2 is obtained through the least-squares
analysis. The value for each facility type is obtained from information in the
county level, except for the asterisk(*)-marked values, which are from the
state level (US) and the province level (SK). The numbers in parentheses are
the standard errors in the last digits.
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 Left plot: ambulatory hospitals in the U.S.
 Right plot: public schools in the U.S.
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of ice in supercooled clouds at temperatures
below about –10 or –20°C. It has already been
established that contrails affect the atmosphere
primarily at temperatures below –40°C (15). This
process extends the envelope for aircraft effects
on the atmosphere to warmer temperatures. In-
advertent seeding may not be important globally,
but regionally near major airports in midlatitudes
during cool weather months it may lead to en-
hanced precipitation at the ground. Polar clouds
are particularly susceptible to the effect, modify-
ing incoming and outgoing radiative fluxes near
the surface and therefore local meteorology and
climatology.
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Pattern in Escalations in Insurgent
and Terrorist Activity
Neil Johnson,1 Spencer Carran,2,3 Joel Botner,4 Kyle Fontaine,5 Nathan Laxague,1

Philip Nuetzel,5 Jessica Turnley,6 Brian Tivnan7,8

In military planning, it is important to be able to estimate not only the number of fatalities but how
often attacks that result in fatalities will take place. We uncovered a simple dynamical pattern that may
be used to estimate the escalation rate and timing of fatal attacks. The time difference between
fatal attacks by insurgent groups within individual provinces in both Afghanistan and Iraq, and by
terrorist groups operating worldwide, gives a potent indicator of the later pace of lethal activity.

In 1948, Lewis Fry Richardson found that the
number of wars with a given number of fa-
talities follows an approximate power-law

statistical distribution as a function of the number
of fatalities (1). Recent research has shown that a
similar statistical distribution arises for the num-
ber of fatalities in individual clashes and acts of
terrorism (2, 3), whereas the relative stability of
these distributions over time allows an estimate
to be given of the severity of future wars or
clashes within an ongoing war (2–4). However,
these existing studies say nothing about the op-
erationally relevant questions (5–7) of how the
underlying arms race evolves over time, or when
fatal attacks might occur. Here, we confront these
questions using fatality data obtained on an un-
precedented daily scale from the ongoing insur-
gent war in Afghanistan and the recent one in
Iraq. Our data analysis is freely available for pub-
lic scrutiny: The coalition military fatality data
come from the public Web site www.icasualties.
org. Our analysis was done with the free down-

loadable tool Open Office, which runs on any
computer platform. The supporting online ma-
terial (SOM) for this paper contains step-by-step
instructions together with OpenOffice worksheets.
For Afghanistan, we include fatalities from the
start of Operation Enduring Freedom in 2001
until summer 2010, when General Petraeus be-
came commander of the International Security
Assistance Force and the U.S.-led surge started.
For Operation Iraqi Freedom, the data include
fatalities from 2003 until summer 2010, when
U.S. military action officially ended. The ter-
rorism results are derived from a recent study,
which used the database of the Memorial Insti-
tute for the Prevention of Terrorism, compris-
ing the 3143 fatal attacks carried out by the 381
known terrorist groups operating within the pe-
riod 1968–2008 (8). Suicide bombing data for
Hezbollah (1982–1985) and Pakistan militants
(1995–2008) comes from the public Web site
http://cpost.uchicago.edu.

For a wide range of human activities, the time
taken to complete a given challenging task de-
creases with successive repetitions, following an
approximate power-law progress curve (8–12).
This inspires us to analyze the insurgents’ com-
pletion of fatal attacks against coalition military
forces in a similar way (Fig. 1, A and B). We
calculated the best-fit power-law progress curve
tn ¼ t1n−b, where tn represents the interval
between the (n – 1)’th and n’th fatal day (one in
which the insurgent activity produces at least one

coalition military death), where n = 1, 2, 3, etc.
b indicates the escalation rate. t1 is the time
interval between the first 2 days with coalition
military fatalities. (For global terrorism, a fatal
day is one in which a particular terrorist group
produced at least one death anywhere in the
world.) Figure 1C shows the best-fit values t1 and
b for each province in Afghanistan, for all forms
of hostile death. The average number of fatal-
ities per fatal attack is fairly constant in a conflict
(2, 3, 8), hence it is in insurgents’ interest (or that
of a particular terrorist group) that the time be-
tween fatal days decrease rapidly, and hence b is
large and positive, while the opposite is true for
the military (or counterterrorism force). The scat-
ter in tn in Fig. 1B is typical for real-world tasks
(in particular, given the ongoing two-way strug-
gle), and the Pearson rank product-moment cor-
relation coefficient (R2) is within an acceptable
range for social systems (9–14). Although alter-
native progress curve forms are possible, any
such two-parameter progress curve amounts to a
nonlinear transformation of the power-law form
and hence generates a more complex version of
Fig. 1C. An exponential form does not generate
systematically better progress-curve fits; R2 for
the power-law form is better by up to 70% for
three-quarters of the provinces, including (most
importantly) those with the most data points,
and only tends to be comparable for the few
provinces having sparse datapoints and larger
tn scatter. We do not consider events with no
deaths because they occur almost daily;moreover,
the injury statistics are not publicly available. Al-
though the data resolution time scale is 1 day, this
is not problematic, because the tn values dictating
the best-fit progress curve for a given province, or
terrorist group, are usually much larger than 1.

Figure 1C reveals a surprising linear relation-
ship between the best-fit progress curve values t1
and b for individual provinces. The straight line
through the provinces has R2 = 0.9 and is given
by the equation b ¼ mlog10t1 þ c, with best-fit
parameter valuesm = 0.89 and c = −1.22. Even
if one speculated that the t1 and b values have
to lie somewhere in this range (which, a priori,

1Department of Physics, University of Miami, Coral Gables,
FL 33124, USA. 2Department of Biology, University of Miami,
Coral Gables, FL 33124, USA. 3Department of Mathematics,
University of Miami, Coral Gables, FL 33124, USA. 4Department
of Computer Science, University of Miami, Coral Gables, FL
33124, USA. 5Department of International Studies, University
of Miami, Coral Gables, FL 33124, USA. 6Galisteo Consulting
Group, Albuquerque, NM 87110, USA. 7The MITRE Corporation,
McLean, VA 22102, USA. 8Complex Systems Center, University
of Vermont, Burlington, VT 05405, USA.
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“Pattern in escalations in insurgent and
terrorist activity”
Johnson et al.,
Science, 333, 81–84, 2011. [16]

they do not), a simple Monte Carlo calculation
puts the probability of this linear relationship
emerging by chance with a comparable R2 at less
than 1 in 106. Figure 2 shows that the linear re-
lationship extends to a specific weapon [that is,
fatalities caused by improvised explosive devices
(IEDs)] and to a completely different insurgent
conflict (Iraq), as well as to global terrorism and
suicide bombings by individual groups. These
t1 and b values suggest, for example, that com-
mon organizational processes underlie all hostile
military fatalities in Farah and Kunar, IED mil-
itary fatalities in Kabul, and fatal terrorist attacks.
The fact that Fig. 2 shows larger scatter than
Fig. 1C is understandable given its inclusion of
events in separate countries and the sparser num-
ber of IED fatalities as compared to total hostile
fatalities. Although the Afghanistan provinces
exhibit an escalation of fatal days throughout the
entire data set (that is, decreasing tn), the Iraq
provinces cease to show pure escalation toward
the end of the conflict, where fatalities cease. Be-
cause this paper focuses on escalation, the Iraq
data points in Fig. 2 correspond to the initial
escalation up to the turning point in the cumu-
lative moving average of tn. Other reasonable
methods for determining a turning point retain
the same linear structure as that in Fig. 2.

We considered the possibility that these re-
sults derive from contagion or diffusion effects
due to proximity. The data points for Kandahar,
Kunar, and Farah sit nearby in Fig. 1C, showing
that their escalation patterns are almost iden-
tical; however, they are widely separated geo-
graphically within Afghanistan, with Kandahar
in the south, Kunar in the east, and Farah in the
west. If fatal days in different provinces were
synchronized in calendar time (which they are
not), they would sit at the same point in Fig. 1C,
but they do not. Likewise, if fatal days in different
provinces were independent, then the individual
(t1, b) points should be scattered randomly across
Fig. 1C, but they are not. Comparing Fig. 1C to
detailed sociotechnical maps (15), we could not
detect a clear systematic relationship between the
data point locations and effects such as proximity
to Pakistan, density of internally displaced per-
sons, common tribal warlords, or levels of poppy
production (16). In terms of increases in troop
or insurgent numbers, it would have required a
very complex and specific province-dependent
increase, combined with a very contrived math-
ematical relationship to fatalities, to produce
the observed patterns. Instead, the calendar times
for the n’th fatal day vary wildly between prov-
inces (for instance, the first recorded military
fatality in Paktia was 4March 2002, whereas in
Wardak it was 25 July 2007). Nor are the ob-
served patterns simply linked to an increase in
the number of troops and hence to an increase
in the number of targets, because monthly troop
increases in Afghanistan were almost linear, not a
power curve (16, 17). Furthermore, as observed
in Iraq after the surge, significant troop increases
can actually decrease the military fatality rate.

Fig. 1. (A) Schematic timeline of successive fatal days shown as vertical bars. t1 is the time interval
between the first two fatal days, labeled 0 and 1. (B) Successive time intervals tn between days with IED
fatalities in the Afghanistan province of Kandahar (squares). On this log-log plot, the best-fit power-law
progress curve is by definition a straight (blue) line with slope −b (b is an escalation rate). (C) The solid
blue line shows best linear fit through progress-curve parameter values t1 and b for individual
Afghanistan provinces (blue squares) for all hostile fatalities (all coalition military fatalities attributed to
insurgent activity). The green dashed line shows value b = 0.5, which is the situation in which there are no
correlations. The subset of fatalities recorded in icasualties as “southern Afghanistan” is shown as a
separate region because of their likely connection to operations near the Pakistan border.

Fig. 2. The solid black line shows the best linear fit through progress-curve parameter values t1 and b for
IED fatalities in provinces in Afghanistan (blue squares) and Iraq (red squares). Because the frequency of
IED fatalities for provinces sitting just below b = 0 is low, their b values are relatively uncertain and should
be regarded simply as b ≈ 0. The green dashed line is at b = 0.5. These findings are consistent with results
for IED data aggregated over all Afghanistan (blue star) and for global terrorism and suicide bombings.
Global terrorism: The dark diamond shows the t1 and b values deduced from the best-fit progress curve for
global terrorist group activity when averaged over all attacks (8); the light diamond is an alternative
estimate where t1 and b are calculated directly by inserting the time intervals between initial attacks into
the progress curve formula (SOM). Suicide bombings: The blue triangle is for Hezbollah suicide attacks, and
the white triangle is for suicide attacks within Pakistan (data are from http://cpost.uchicago.edu/).

1 JULY 2011 VOL 333 SCIENCE www.sciencemag.org82

REPORTS  Escalation: 𝜏𝑛 ∼ 𝜏1𝑛−𝑏

 𝑏 = scaling exponent
(escalation rate)

 Interevent time 𝜏𝑛
between fatal attacks
𝑛 − 1 and 𝑛 (binned by
days)

 Learning curves
organizations [37]

 More later on size
distributions [9, 17, 6]

https://pdodds.w3.uvm.edu//research/papers/others/everything/johnson2011b.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/johnson2011b.pdf
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Irregular verbs
Cleaning up the code that is English:

LETTERS

Quantifying the evolutionary dynamics of language
Erez Lieberman1,2,3*, Jean-Baptiste Michel1,4*, Joe Jackson1, Tina Tang1 & Martin A. Nowak1

Human language is based on grammatical rules1–4. Cultural evolu-
tion allows these rules to change over time5. Rules compete with
each other: as new rules rise to prominence, old ones die away. To
quantify the dynamics of language evolution, we studied the regu-
larization of English verbs over the past 1,200 years. Although an
elaborate system of productive conjugations existed in English’s
proto-Germanic ancestor, Modern English uses the dental suffix,
‘-ed’, to signify past tense6. Here we describe the emergence of this
linguistic rule amidst the evolutionary decay of its exceptions,
known to us as irregular verbs. We have generated a data set of
verbs whose conjugations have been evolving for more than a
millennium, tracking inflectional changes to 177 Old-English
irregular verbs. Of these irregular verbs, 145 remained irregular
in Middle English and 98 are still irregular today. We study how
the rate of regularization depends on the frequency of word usage.
The half-life of an irregular verb scales as the square root of its
usage frequency: a verb that is 100 times less frequent regularizes
10 times as fast. Our study provides a quantitative analysis of the
regularization process by which ancestral forms gradually yield to
an emerging linguistic rule.

Natural languages comprise elaborate systems of rules that enable
one speaker to communicate with another7. These rules serve to
simplify the production of language and enable an infinite array of
comprehensible formulations8–10. However, each rule has exceptions,
and even the rules themselves wax and wane over centuries and
millennia11,12. Verbs that obey standard rules of conjugation in their
native language are called regular verbs13. In the Modern English
language, regular verbs are conjugated into the simple past and
past-participle forms by appending the dental suffix ‘-ed’ to the
root (for instance, infinitive/simple past/past participle: talk/talked/
talked). Irregular verbs obey antiquated rules (sing/sang/sung) or, in
some cases, no rule at all (go/went)14,15. New verbs entering English
universally obey the regular conjugation (google/googled/googled),
and many irregular verbs eventually regularize. It is much rarer for
regular verbs to become irregular: for every ‘sneak’ that ‘snuck’ in16,
there are many more ‘flews’ that ‘flied’ out.

Although less than 3% of modern verbs are irregular, the ten most
common verbs are all irregular (be, have, do, go, say, can, will, see,
take, get). The irregular verbs are heavily biased towards high fre-
quencies of occurrence17,18. Linguists have suggested an evolutionary
hypothesis underlying the frequency distribution of irregular verbs:
uncommon irregular verbs tend to disappear more rapidly because
they are less readily learned and more rapidly forgotten19,20.

To study this phenomenon quantitatively, we studied verb inflec-
tion beginning with Old English (the language of Beowulf, spoken
around AD 800), continuing through Middle English (the language of
Chaucer’s Canterbury Tales, spoken around AD 1200), and ending
with Modern English, the language as it is spoken today. The modern
‘-ed’ rule descends from Old English ‘weak’ conjugation, which

applied to three-quarters of all Old English verbs21. The excep-
tions—ancestors of the modern irregular verbs—were mostly
members of the so-called ‘strong’ verbs. There are seven different
classes of strong verbs with exemplars among the Modern English
irregular verbs, each with distinguishing markers that often include
characteristic vowel shifts. Although stable coexistence of multiple
rules is one possible outcome of rule dynamics, this is not what
occurred in English verb inflection22. We therefore define regularity
with respect to the modern ‘-ed’ rule, and call all these exceptional
forms ‘irregular’.

We consulted a large collection of grammar textbooks describing
verb inflection in these earlier epochs, and hand-annotated every
irregular verb they described (see Supplementary Information).
This provided us with a list of irregular verbs from ancestral
forms of English. By eliminating verbs that were no longer part of
Modern English, we compiled a list of 177 Old English irregular
verbs that remain part of the language to this day. Of these 177 Old
English irregulars, 145 remained irregular in Middle English and 98
are still irregular in Modern English. Verbs such as ‘help’, ‘grip’ and
‘laugh’, which were once irregular, have become regular with the
passing of time.

Next we obtained frequency data for all verbs by using the CELEX
corpus, which contains 17.9 million words from a wide variety of
textual sources23. For each of our 177 verbs, we calculated the fre-
quency of occurrence among all verbs. We subdivided the frequency
spectrum into six logarithmically spaced bins from 1026 to 1.
Figure 1a shows the number of irregular verbs in each frequency
bin. There are only two verbs, ‘be’ and ‘have’, in the highest frequency
bin, with mean frequency .1021. Both remain irregular to the pre-
sent day. There are 11 irregular verbs in the second bin, with mean
frequency between 1022 and 1021. These 11 verbs have all remained
irregular from Old English to Modern English. In the third bin, with a
mean frequency between 1023 and 1022, we find that 37 irregular
verbs of Old English all remained irregular in Middle English, but
only 33 of them are irregular in Modern English. Four verbs in this
frequency range, ‘help’, ‘reach’, ‘walk’ and ‘work’, underwent regu-
larization. In the fourth frequency bin, 1024 to 1023, 65 irregular
verbs of Old English have left 57 in Middle and 37 in Modern English.
In the fifth frequency bin, 1025 to 1024, 50 irregulars of Old English
have left 29 in Middle and 14 in Modern English. In the sixth fre-
quency bin, 1026 to 1025, 12 irregulars of Old English decline to 9 in
Middle and only 1 in Modern English: ‘slink’, a verb that aptly
describes this quiet process of disappearance (Table 1).

Plotting the number of irregular verbs against their frequency
generates a unimodal distribution with a peak between 1024 and
1023. This unimodal distribution again demonstrates that irregular
verbs are not an arbitrary subset of all verbs, because a random subset
of verbs (such as all verbs that contain the letter ‘m’) would follow
Zipf’s law, a power law with a slope of 20.75 (refs 24,25).

*These authors contributed equally to this work

1Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, 2Department of Applied Mathematics, Harvard University,
Cambridge, Massachusetts 02138, USA. 3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
4Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Vol 449 | 11 October 2007 | doi:10.1038/nature06137

713
Nature   ©2007 Publishing Group

“Quantifying the evolutionary dynamics of
language”
Lieberman et al.,
Nature, 449, 713–716, 2007. [20]

NATUREJOBS
 Mentoring 

awards

NUCLEAR 
WEAPONS

How to be an 
IAEA inspector

 ATMOSPHERIC 
HUMIDITY

The human touch 
 GENE SILENCING

Non-toxic RNA 
inhibition

The evolution 
of language

S WORDS 
ON THE 
BRINK

449, 637–754  11 O
ctober 20

07
w

w
w

.nature.com
/nature

no.7163 

11 October 2007 | www.nature.com/nature | $10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

 Exploration of how verbs
with irregular conjugation
gradually become regular
over time.
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Irregular verbs

Four of our six frequency bins, those between 1026 and 1022, allow
us to estimate the relative regularization rates of irregular verbs.
Calculating the relative regularization rates of verbs of different

frequencies is independent of time, which makes the dating of Old
and Middle English irrelevant for this calculation. We can plot regu-
larization rate versus frequency and fit a straight line in a log–log plot
(Fig. 1b). By comparing Old andModern English we obtain a slope of
about 20.51. Therefore, an irregular verb that is 100 times less fre-
quent is regularized 10 times as fast. In other words, the half-life of
irregular verbs is proportional to the square root of their frequency.
By comparing Middle and Modern English we find a slope of about
20.48, consistent with the previous result. Both comparisons show
that low-frequency irregular verbs are selectively forgotten.

Figure 2a shows the exponential decay of the irregular verbs in the
four frequency bins between 1026 and 1022 as a function of time.
From these data, which depend on the dating of Old and Middle
English, we can estimate actual half-lives of the irregular verbs in
different frequency bins. Irregular verbs that occur with a frequency
between 1026 and 1025 have a half-life of about 300 years, whereas
those with a frequency between 1024 and 1023 have a half-life of
2,000 years. If we fit half-life versus frequency with a straight line in
a log–log plot, we obtain a slope of 0.50, which again suggests that the
half-life of irregular verbs is proportional to approximately the
square root of their frequency (Fig. 2b). It is noteworthy that various
methods of fitting the data give the same results.

We cannot directly determine the regularization rate for frequency
bins above 1022, because regularization is so slow that no event was
observed in the time span of our data; however, we can extrapolate.
For instance, the half-life of verbs with frequencies between 1022 and
1021 should be 14,400 years. For these bins, the population is so small
and the half-life so long that we may not see a regularization event in
the lifetime of the English language.

To test whether the dynamics within individual competing rules
were captured by our global analysis, we studied the decay of indi-
vidual classes of strong verbs (for example, hit/hit/hit, hurt/hurt/
hurt; draw/drew/drawn, grow/grew/grown)26. Although our resolu-
tion is limited by the small sample size, exponential decay is once
again observed, with similar exponents (see Supplementary Fig. 1).
Like a Cheshire cat, dying rules vanish one instance at a time, leaving
behind a unimodal frown.

Because adequate corpora of Old andMiddle English do not exist,
we have estimated the frequency of an irregular verb of Old and
Middle English by the frequency of the corresponding (regular or
irregular) verb of Modern English27. A large fraction of verbs would
have had to change frequency by several orders of magnitude to
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Figure 1 | Irregular verbs regularize at a rate that is inversely proportional
to the square root of their usage frequency. a, The evolution of 177 verbs
from Old English (green) over time, through Middle English (red) and
Modern English (blue). The fraction remaining irregular in each bin
decreases as the frequency decreases. The frequency shown is that of the
modern descendant, and was computed using the CELEX corpus. Error bars
indicate standard deviation andwere calculated using the bootstrapmethod.
b, The regularization rate of irregular verbs as a function of frequency. The
relative regularization rates obtained by comparing Old versus Modern
English (green) and Middle versus Modern English (red) scale linearly on a
log–log plot with a downward slope of nearly one-half. The regularization
rate and the half-life scale with the square root of the frequency.

Table 1 | The 177 irregular verbs studied

Frequency

10−1−1
10−2−10−1

10−3−10−2

10−4−10−3

10−5−10−4

10−6−10−5

Verbs

be, have
come, do, find, get, give, go, know, say, see, take, think

begin, break, bring, buy, choose, draw, drink, drive, eat, fall, 
fight, forget, grow, hang, help, hold, leave, let, lie, lose, 

reach, rise, run, seek, set, shake, sit, sleep, speak, stand, 
teach, throw, understand, walk, win, work, write

arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, 
carve, chew, climb, cling, creep, dare, dig, drag, flee, float, 
flow, fly, fold, freeze, grind, leap, lend, lock, melt, reckon, 

ride, rush, shape, shine, shoot, shrink, sigh, sing, sink, slide, 
slip, smoke, spin, spring, starve, steal, step, stretch, strike, 

stroke, suck, swallow, swear, sweep, swim, swing, tear, 
wake, wash, weave, weep, weigh, wind, yell, yield

bark, bellow, bid, blend, braid, brew, cleave, cringe, crow, 
dive, drip, fare, fret, glide, gnaw, grip, heave, knead, low, 
milk, mourn, mow, prescribe, redden, reek, row, scrape, 
seethe, shear, shed, shove, slay, slit, smite, sow, span, 

spurn, sting, stink, strew, stride, swell, tread, uproot, wade, 
warp, wax, wield, wring, writhe

bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew, 
sup, wreak

Regularization (%)

0
0

10

43

72

91

Half-life (yr)

38,800
14,400
5,400

2,000

700

300

177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each
bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As wemove down the list, an increasingly large fraction of the verbs are red; the frequency-
dependent regularization of irregular verbs becomes immediately apparent.
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Four of our six frequency bins, those between 1026 and 1022, allow
us to estimate the relative regularization rates of irregular verbs.
Calculating the relative regularization rates of verbs of different

frequencies is independent of time, which makes the dating of Old
and Middle English irrelevant for this calculation. We can plot regu-
larization rate versus frequency and fit a straight line in a log–log plot
(Fig. 1b). By comparing Old andModern English we obtain a slope of
about 20.51. Therefore, an irregular verb that is 100 times less fre-
quent is regularized 10 times as fast. In other words, the half-life of
irregular verbs is proportional to the square root of their frequency.
By comparing Middle and Modern English we find a slope of about
20.48, consistent with the previous result. Both comparisons show
that low-frequency irregular verbs are selectively forgotten.

Figure 2a shows the exponential decay of the irregular verbs in the
four frequency bins between 1026 and 1022 as a function of time.
From these data, which depend on the dating of Old and Middle
English, we can estimate actual half-lives of the irregular verbs in
different frequency bins. Irregular verbs that occur with a frequency
between 1026 and 1025 have a half-life of about 300 years, whereas
those with a frequency between 1024 and 1023 have a half-life of
2,000 years. If we fit half-life versus frequency with a straight line in
a log–log plot, we obtain a slope of 0.50, which again suggests that the
half-life of irregular verbs is proportional to approximately the
square root of their frequency (Fig. 2b). It is noteworthy that various
methods of fitting the data give the same results.

We cannot directly determine the regularization rate for frequency
bins above 1022, because regularization is so slow that no event was
observed in the time span of our data; however, we can extrapolate.
For instance, the half-life of verbs with frequencies between 1022 and
1021 should be 14,400 years. For these bins, the population is so small
and the half-life so long that we may not see a regularization event in
the lifetime of the English language.

To test whether the dynamics within individual competing rules
were captured by our global analysis, we studied the decay of indi-
vidual classes of strong verbs (for example, hit/hit/hit, hurt/hurt/
hurt; draw/drew/drawn, grow/grew/grown)26. Although our resolu-
tion is limited by the small sample size, exponential decay is once
again observed, with similar exponents (see Supplementary Fig. 1).
Like a Cheshire cat, dying rules vanish one instance at a time, leaving
behind a unimodal frown.

Because adequate corpora of Old andMiddle English do not exist,
we have estimated the frequency of an irregular verb of Old and
Middle English by the frequency of the corresponding (regular or
irregular) verb of Modern English27. A large fraction of verbs would
have had to change frequency by several orders of magnitude to
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Figure 1 | Irregular verbs regularize at a rate that is inversely proportional
to the square root of their usage frequency. a, The evolution of 177 verbs
from Old English (green) over time, through Middle English (red) and
Modern English (blue). The fraction remaining irregular in each bin
decreases as the frequency decreases. The frequency shown is that of the
modern descendant, and was computed using the CELEX corpus. Error bars
indicate standard deviation andwere calculated using the bootstrapmethod.
b, The regularization rate of irregular verbs as a function of frequency. The
relative regularization rates obtained by comparing Old versus Modern
English (green) and Middle versus Modern English (red) scale linearly on a
log–log plot with a downward slope of nearly one-half. The regularization
rate and the half-life scale with the square root of the frequency.

Table 1 | The 177 irregular verbs studied

Frequency

10−1−1
10−2−10−1

10−3−10−2

10−4−10−3

10−5−10−4

10−6−10−5

Verbs

be, have
come, do, find, get, give, go, know, say, see, take, think

begin, break, bring, buy, choose, draw, drink, drive, eat, fall, 
fight, forget, grow, hang, help, hold, leave, let, lie, lose, 

reach, rise, run, seek, set, shake, sit, sleep, speak, stand, 
teach, throw, understand, walk, win, work, write

arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, 
carve, chew, climb, cling, creep, dare, dig, drag, flee, float, 
flow, fly, fold, freeze, grind, leap, lend, lock, melt, reckon, 

ride, rush, shape, shine, shoot, shrink, sigh, sing, sink, slide, 
slip, smoke, spin, spring, starve, steal, step, stretch, strike, 

stroke, suck, swallow, swear, sweep, swim, swing, tear, 
wake, wash, weave, weep, weigh, wind, yell, yield

bark, bellow, bid, blend, braid, brew, cleave, cringe, crow, 
dive, drip, fare, fret, glide, gnaw, grip, heave, knead, low, 
milk, mourn, mow, prescribe, redden, reek, row, scrape, 
seethe, shear, shed, shove, slay, slit, smite, sow, span, 

spurn, sting, stink, strew, stride, swell, tread, uproot, wade, 
warp, wax, wield, wring, writhe

bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew, 
sup, wreak

Regularization (%)
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177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each
bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As wemove down the list, an increasingly large fraction of the verbs are red; the frequency-
dependent regularization of irregular verbs becomes immediately apparent.
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Irregular verbs

Four of our six frequency bins, those between 1026 and 1022, allow
us to estimate the relative regularization rates of irregular verbs.
Calculating the relative regularization rates of verbs of different

frequencies is independent of time, which makes the dating of Old
and Middle English irrelevant for this calculation. We can plot regu-
larization rate versus frequency and fit a straight line in a log–log plot
(Fig. 1b). By comparing Old andModern English we obtain a slope of
about 20.51. Therefore, an irregular verb that is 100 times less fre-
quent is regularized 10 times as fast. In other words, the half-life of
irregular verbs is proportional to the square root of their frequency.
By comparing Middle and Modern English we find a slope of about
20.48, consistent with the previous result. Both comparisons show
that low-frequency irregular verbs are selectively forgotten.

Figure 2a shows the exponential decay of the irregular verbs in the
four frequency bins between 1026 and 1022 as a function of time.
From these data, which depend on the dating of Old and Middle
English, we can estimate actual half-lives of the irregular verbs in
different frequency bins. Irregular verbs that occur with a frequency
between 1026 and 1025 have a half-life of about 300 years, whereas
those with a frequency between 1024 and 1023 have a half-life of
2,000 years. If we fit half-life versus frequency with a straight line in
a log–log plot, we obtain a slope of 0.50, which again suggests that the
half-life of irregular verbs is proportional to approximately the
square root of their frequency (Fig. 2b). It is noteworthy that various
methods of fitting the data give the same results.

We cannot directly determine the regularization rate for frequency
bins above 1022, because regularization is so slow that no event was
observed in the time span of our data; however, we can extrapolate.
For instance, the half-life of verbs with frequencies between 1022 and
1021 should be 14,400 years. For these bins, the population is so small
and the half-life so long that we may not see a regularization event in
the lifetime of the English language.

To test whether the dynamics within individual competing rules
were captured by our global analysis, we studied the decay of indi-
vidual classes of strong verbs (for example, hit/hit/hit, hurt/hurt/
hurt; draw/drew/drawn, grow/grew/grown)26. Although our resolu-
tion is limited by the small sample size, exponential decay is once
again observed, with similar exponents (see Supplementary Fig. 1).
Like a Cheshire cat, dying rules vanish one instance at a time, leaving
behind a unimodal frown.

Because adequate corpora of Old andMiddle English do not exist,
we have estimated the frequency of an irregular verb of Old and
Middle English by the frequency of the corresponding (regular or
irregular) verb of Modern English27. A large fraction of verbs would
have had to change frequency by several orders of magnitude to
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Figure 1 | Irregular verbs regularize at a rate that is inversely proportional
to the square root of their usage frequency. a, The evolution of 177 verbs
from Old English (green) over time, through Middle English (red) and
Modern English (blue). The fraction remaining irregular in each bin
decreases as the frequency decreases. The frequency shown is that of the
modern descendant, and was computed using the CELEX corpus. Error bars
indicate standard deviation andwere calculated using the bootstrapmethod.
b, The regularization rate of irregular verbs as a function of frequency. The
relative regularization rates obtained by comparing Old versus Modern
English (green) and Middle versus Modern English (red) scale linearly on a
log–log plot with a downward slope of nearly one-half. The regularization
rate and the half-life scale with the square root of the frequency.

Table 1 | The 177 irregular verbs studied

Frequency

10−1−1
10−2−10−1

10−3−10−2

10−4−10−3

10−5−10−4

10−6−10−5

Verbs

be, have
come, do, find, get, give, go, know, say, see, take, think

begin, break, bring, buy, choose, draw, drink, drive, eat, fall, 
fight, forget, grow, hang, help, hold, leave, let, lie, lose, 

reach, rise, run, seek, set, shake, sit, sleep, speak, stand, 
teach, throw, understand, walk, win, work, write

arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, 
carve, chew, climb, cling, creep, dare, dig, drag, flee, float, 
flow, fly, fold, freeze, grind, leap, lend, lock, melt, reckon, 

ride, rush, shape, shine, shoot, shrink, sigh, sing, sink, slide, 
slip, smoke, spin, spring, starve, steal, step, stretch, strike, 

stroke, suck, swallow, swear, sweep, swim, swing, tear, 
wake, wash, weave, weep, weigh, wind, yell, yield

bark, bellow, bid, blend, braid, brew, cleave, cringe, crow, 
dive, drip, fare, fret, glide, gnaw, grip, heave, knead, low, 
milk, mourn, mow, prescribe, redden, reek, row, scrape, 
seethe, shear, shed, shove, slay, slit, smite, sow, span, 

spurn, sting, stink, strew, stride, swell, tread, uproot, wade, 
warp, wax, wield, wring, writhe

bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew, 
sup, wreak

Regularization (%)
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177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each
bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As wemove down the list, an increasingly large fraction of the verbs are red; the frequency-
dependent regularization of irregular verbs becomes immediately apparent.
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Irregular verbsFour of our six frequency bins, those between 1026 and 1022, allow
us to estimate the relative regularization rates of irregular verbs.
Calculating the relative regularization rates of verbs of different

frequencies is independent of time, which makes the dating of Old
and Middle English irrelevant for this calculation. We can plot regu-
larization rate versus frequency and fit a straight line in a log–log plot
(Fig. 1b). By comparing Old andModern English we obtain a slope of
about 20.51. Therefore, an irregular verb that is 100 times less fre-
quent is regularized 10 times as fast. In other words, the half-life of
irregular verbs is proportional to the square root of their frequency.
By comparing Middle and Modern English we find a slope of about
20.48, consistent with the previous result. Both comparisons show
that low-frequency irregular verbs are selectively forgotten.

Figure 2a shows the exponential decay of the irregular verbs in the
four frequency bins between 1026 and 1022 as a function of time.
From these data, which depend on the dating of Old and Middle
English, we can estimate actual half-lives of the irregular verbs in
different frequency bins. Irregular verbs that occur with a frequency
between 1026 and 1025 have a half-life of about 300 years, whereas
those with a frequency between 1024 and 1023 have a half-life of
2,000 years. If we fit half-life versus frequency with a straight line in
a log–log plot, we obtain a slope of 0.50, which again suggests that the
half-life of irregular verbs is proportional to approximately the
square root of their frequency (Fig. 2b). It is noteworthy that various
methods of fitting the data give the same results.

We cannot directly determine the regularization rate for frequency
bins above 1022, because regularization is so slow that no event was
observed in the time span of our data; however, we can extrapolate.
For instance, the half-life of verbs with frequencies between 1022 and
1021 should be 14,400 years. For these bins, the population is so small
and the half-life so long that we may not see a regularization event in
the lifetime of the English language.

To test whether the dynamics within individual competing rules
were captured by our global analysis, we studied the decay of indi-
vidual classes of strong verbs (for example, hit/hit/hit, hurt/hurt/
hurt; draw/drew/drawn, grow/grew/grown)26. Although our resolu-
tion is limited by the small sample size, exponential decay is once
again observed, with similar exponents (see Supplementary Fig. 1).
Like a Cheshire cat, dying rules vanish one instance at a time, leaving
behind a unimodal frown.

Because adequate corpora of Old andMiddle English do not exist,
we have estimated the frequency of an irregular verb of Old and
Middle English by the frequency of the corresponding (regular or
irregular) verb of Modern English27. A large fraction of verbs would
have had to change frequency by several orders of magnitude to
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Figure 1 | Irregular verbs regularize at a rate that is inversely proportional
to the square root of their usage frequency. a, The evolution of 177 verbs
from Old English (green) over time, through Middle English (red) and
Modern English (blue). The fraction remaining irregular in each bin
decreases as the frequency decreases. The frequency shown is that of the
modern descendant, and was computed using the CELEX corpus. Error bars
indicate standard deviation andwere calculated using the bootstrapmethod.
b, The regularization rate of irregular verbs as a function of frequency. The
relative regularization rates obtained by comparing Old versus Modern
English (green) and Middle versus Modern English (red) scale linearly on a
log–log plot with a downward slope of nearly one-half. The regularization
rate and the half-life scale with the square root of the frequency.

Table 1 | The 177 irregular verbs studied

Frequency

10−1−1
10−2−10−1

10−3−10−2

10−4−10−3

10−5−10−4

10−6−10−5

Verbs

be, have
come, do, find, get, give, go, know, say, see, take, think

begin, break, bring, buy, choose, draw, drink, drive, eat, fall, 
fight, forget, grow, hang, help, hold, leave, let, lie, lose, 

reach, rise, run, seek, set, shake, sit, sleep, speak, stand, 
teach, throw, understand, walk, win, work, write

arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, 
carve, chew, climb, cling, creep, dare, dig, drag, flee, float, 
flow, fly, fold, freeze, grind, leap, lend, lock, melt, reckon, 

ride, rush, shape, shine, shoot, shrink, sigh, sing, sink, slide, 
slip, smoke, spin, spring, starve, steal, step, stretch, strike, 

stroke, suck, swallow, swear, sweep, swim, swing, tear, 
wake, wash, weave, weep, weigh, wind, yell, yield

bark, bellow, bid, blend, braid, brew, cleave, cringe, crow, 
dive, drip, fare, fret, glide, gnaw, grip, heave, knead, low, 
milk, mourn, mow, prescribe, redden, reek, row, scrape, 
seethe, shear, shed, shove, slay, slit, smite, sow, span, 

spurn, sting, stink, strew, stride, swell, tread, uproot, wade, 
warp, wax, wield, wring, writhe

bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew, 
sup, wreak
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177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each
bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As wemove down the list, an increasingly large fraction of the verbs are red; the frequency-
dependent regularization of irregular verbs becomes immediately apparent.
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interfere with the effects observed. To verify that large changes in
frequency are rare, we compared frequency data from CELEX with
frequencies drawn from the largest available corpus of Middle
English texts28. Of 50 verbs, only 5 had frequency changes greater
than a factor of 10 (Supplementary Fig. 2).

Our analysis covers a vast period, spanning the Norman invasion
and the invention of the printing press, but these events did not upset
the dynamics of English regularization. Therefore, it is possible to
retrospectively trace the evolution of the irregular verbs, moving
backwards in time from the observed Modern English distribution
and up through Middle and Old English. Going still further back in
time allows us to explore the effects of completely undoing the fre-
quency-dependent selective process that the irregular verbs have
undergone. Eventually, the shape of the curve changes from unim-
odal to a power law decline, with slope of nearly20.75 (Fig. 3). This
finding is consistent with the fact that random subsets of verbs (and
of all types of words) exhibit such a zipfian distribution. The observed
irregular verb distribution is the result of selective pressure on a
random collection of ancestral verbs.

We can alsomake predictions about the future of the past tense. By
the time one verb from the set ‘begin, break, bring, buy, choose, draw,
drink, drive, eat, fall’ will regularize, five verbs from the set ‘bid, dive,
heave, shear, shed, slay, slit, sow, sting, stink’ will be regularized. If the
current trends continue, only 83 of the 177 verbs studied will be
irregular in 2500.

What will be the next irregular verb to regularize? It is likely to be
wed/wed/wed. The frequency of ‘wed’ is only 4.2 uses per million
verbs, ranking at the very bottom of the modern irregular verbs.
Indeed, it is already being replaced in many contexts by wed/

wedded/wedded. Now is your last chance to be a ‘newly wed’. The
married couples of the future can only hope for ‘wedded’ bliss.

In previous millennia, many rules vied for control of English lan-
guage conjugation, and fossils of those rules remain to this day. Yet,
from this primordial soup of conjugations, the dental suffix ‘-ed’
emerged triumphant. The competing rules are long dead, and unfa-
miliar even to well-educated native speakers. These rules disappeared
because of the gradual erosion of their instances by a process that we
call regularization. But regularity is not the default state of a lan-
guage—a rule is the tombstone of a thousand exceptions.

METHODS SUMMARY
We searched 11 reference works on Old and Middle English, compiling a list of
every irregular verb that we found. We determined whether each verb is still
present in Modern English. For all Old English verbs whose descendants
remained in the English language, we checked whether they were still irregular
using a complete listing of themodern irregular verbs. If they had regularized, we
determinedwhen regularization had occurred on the basis of the last time period
in which we found a positive annotation listing the verb as irregular. A list of
sources used and the entire resulting annotation are provided in the
Supplementary Information.
We determined usage frequencies for all the verbs using the CELEX database.

We then binned the Old English irregular verbs using a standard logarithmic
binning algorithm in Python. We used the resulting binning to determine regu-
larization rates for verbs of differing frequencies. Regularization rates (Fig. 1b)
for each bin were computed directly. The fits to exponential decay (Fig. 2) and to
the solution of the irregular equation (Fig. 3 and Supplementary Information)
were produced using the method of least squares. The Python source code for
producing the figures and the table is available at http://www.languagedata.org.
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Figure 3 | Extrapolating forward and backward in time using the
observation that regularization rate scales as the square root of frequency.
The differential system is exactly solvable and the solution fits all three
observed distributions. As we move backward in time, the distribution of
irregular verbs approaches the zipfian distribution characteristic of random
sets of words. The distribution for exceptions to the ‘-ed’ rule became non-
random because of frequency-dependent regularization due to selective
pressure from the emerging rule.
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Figure 2 | Irregular verbs decay exponentially over time. a, Specifying
approximate dates of Old and Middle English allows computation of
absolute regularization rates. Regularization rates increase as frequencies
decrease, but are otherwise constant over time. b, Absolute rates of
regularization are shown as a function of frequency. Error bars indicate
standard deviation and were calculated using the bootstrap method. The
square-root scaling is obtained again.
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 ‘Wed’ is next to go.
 -ed is the winning rule...
 But ‘snuck’ is sneaking up on sneaked. [29]

http://books.google.com/ngrams/graph?content=snuck%2Csneaked&year_start=1800&year_end=2000&corpus=0&smoothing=3
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interfere with the effects observed. To verify that large changes in
frequency are rare, we compared frequency data from CELEX with
frequencies drawn from the largest available corpus of Middle
English texts28. Of 50 verbs, only 5 had frequency changes greater
than a factor of 10 (Supplementary Fig. 2).

Our analysis covers a vast period, spanning the Norman invasion
and the invention of the printing press, but these events did not upset
the dynamics of English regularization. Therefore, it is possible to
retrospectively trace the evolution of the irregular verbs, moving
backwards in time from the observed Modern English distribution
and up through Middle and Old English. Going still further back in
time allows us to explore the effects of completely undoing the fre-
quency-dependent selective process that the irregular verbs have
undergone. Eventually, the shape of the curve changes from unim-
odal to a power law decline, with slope of nearly20.75 (Fig. 3). This
finding is consistent with the fact that random subsets of verbs (and
of all types of words) exhibit such a zipfian distribution. The observed
irregular verb distribution is the result of selective pressure on a
random collection of ancestral verbs.

We can alsomake predictions about the future of the past tense. By
the time one verb from the set ‘begin, break, bring, buy, choose, draw,
drink, drive, eat, fall’ will regularize, five verbs from the set ‘bid, dive,
heave, shear, shed, slay, slit, sow, sting, stink’ will be regularized. If the
current trends continue, only 83 of the 177 verbs studied will be
irregular in 2500.

What will be the next irregular verb to regularize? It is likely to be
wed/wed/wed. The frequency of ‘wed’ is only 4.2 uses per million
verbs, ranking at the very bottom of the modern irregular verbs.
Indeed, it is already being replaced in many contexts by wed/

wedded/wedded. Now is your last chance to be a ‘newly wed’. The
married couples of the future can only hope for ‘wedded’ bliss.

In previous millennia, many rules vied for control of English lan-
guage conjugation, and fossils of those rules remain to this day. Yet,
from this primordial soup of conjugations, the dental suffix ‘-ed’
emerged triumphant. The competing rules are long dead, and unfa-
miliar even to well-educated native speakers. These rules disappeared
because of the gradual erosion of their instances by a process that we
call regularization. But regularity is not the default state of a lan-
guage—a rule is the tombstone of a thousand exceptions.

METHODS SUMMARY
We searched 11 reference works on Old and Middle English, compiling a list of
every irregular verb that we found. We determined whether each verb is still
present in Modern English. For all Old English verbs whose descendants
remained in the English language, we checked whether they were still irregular
using a complete listing of themodern irregular verbs. If they had regularized, we
determinedwhen regularization had occurred on the basis of the last time period
in which we found a positive annotation listing the verb as irregular. A list of
sources used and the entire resulting annotation are provided in the
Supplementary Information.
We determined usage frequencies for all the verbs using the CELEX database.

We then binned the Old English irregular verbs using a standard logarithmic
binning algorithm in Python. We used the resulting binning to determine regu-
larization rates for verbs of differing frequencies. Regularization rates (Fig. 1b)
for each bin were computed directly. The fits to exponential decay (Fig. 2) and to
the solution of the irregular equation (Fig. 3 and Supplementary Information)
were produced using the method of least squares. The Python source code for
producing the figures and the table is available at http://www.languagedata.org.
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Figure 3 | Extrapolating forward and backward in time using the
observation that regularization rate scales as the square root of frequency.
The differential system is exactly solvable and the solution fits all three
observed distributions. As we move backward in time, the distribution of
irregular verbs approaches the zipfian distribution characteristic of random
sets of words. The distribution for exceptions to the ‘-ed’ rule became non-
random because of frequency-dependent regularization due to selective
pressure from the emerging rule.
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Figure 2 | Irregular verbs decay exponentially over time. a, Specifying
approximate dates of Old and Middle English allows computation of
absolute regularization rates. Regularization rates increase as frequencies
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 Projecting back in time to proto-Zipf story of many
tools.
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F E B R U A R Y , 1 9 3 6 J O U R N A L OF T H E AERONAUTICAL SCIENCES V O L U M E 3 

Factors Affecting the Cost of Airplanes 

Presented at the Aircraft Operations Session, Fourth Annual Meeting, 1. Ae. S. 

T. P. WRIGHT, Curtiss-Wright Corporation 

INTRODUCTION 

TH I S subject is one which can always be relied upon 
to start a discussion whenever it is raised in air­

craft circles. Great differences of opinion will be voiced 
as to the relative importance of various factors, depend­
ing somewhat on whether the discussion is between 
persons in the (industry who are engaged in sales, 
engineering, design or factory work. The attitude of 
those outside the industry is usually quite supercilious 
with the intimation present that everyone engaged in 
the design, development, or construction of airplanes 
is a sort of prima donna. Therefore, because of the 
rather hazy information which seems to surround the 
subject, it appears in order to discuss the problems 
from several points of view in an effort to arrive at 
logical conclusions. 

The effect of quantity production on cost, particularly, 
requires study as in this respect more than in others, 
there exists a lack of appreciation of the variation which 
occurs. Recently the matter became of increasing 
interest and importance because of the program spon­
sored by the Bureau of Air Commerce for the develop­
ment of a small two-place airplane which, it was hoped, 
could be marketed at $700 assuming a quantity of ten 
thousand units could be released for construction. 

The present writer started his studies of the variation 
of cost with quantity in 1922. A curve depicting such 
variation was worked up empirically from the two or 
three points which previous production experience of the 
same model in differing quantities made possible. 
Through the succeeding years, this original curve, which 
at first showed the variation in labor only, was used for 
estimating purposes and was corrected as more data 
became available. The form which this curve takes 
when plotted on plain cross-section paper is shown in 
Fig. 1. On this figure there is also shown the variation 
of the ratio of labor to raw material as quantity varies. 
The correcting of curves of this type by new points of 
actual experience resulted in data which permitted other 
curves to be plotted, showing the variation of raw 
material, purchased material, and finally, of the whole 
airplane, against quantity. 

Effort was also made to plot the cost of each machine 
of a series in percent of the total cost of the series for 
varying quantities. The work along this line is shown 
in Fig. 2 which, however, must be considered as more 
approximate in accuracy than the others because of the 
greater difficulty in securing reliable empirical informa-
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tibn on the relative cost of each machine of a series, since 
accounting methods seldom reveal such data. However, 
the curves of Fig. 2 are believed to show the general 
shape of curves and trend of data of this kind. 
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“Factors affecting the costs of airplanes”
T. P. Wright,
Journal of Aeronautical Sciences, 10, 302–328,
1936. [37]
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shall be multiplied in order to determine the average 
labor cost for a quantity of twice that number of air-
planes. On Fig. 3 the curves are so plotted as to be 
susceptible of use for quantities which are likely to main-
tain for some time to come. On Fig. 4 the paper is 
arranged to carry the numbers in production to very 
large amounts, of particular interest in noting the pos-
sible future of airplane costs and of use in making 
certain comparisons mentioned further along. 

Material 

Material also decreases in cost as quantity increases 
due to the following reasons : 

First, the amount of waste is cut down. When com-
paring the light weight of the structure of the airplane 
with the actual weight of material purchased in order to 
construct it, it has been found that in a quantity of one 
to five units this waste is as large as forty percent. 
It reduces rapidly as quantity increases, to twenty-five 
or thirty percent in quantities of twenty-five to fifty 
units and down to twenty percent in a quantity of one 
hundred units. Greater cutting efficiency and more 
economical purchasing from the standpoint of matching 
parts from sheets of a given size partially explain this 
reduction. Then too there is also a reduction in material 
cost with quantity due to the reflected effect of the 
reduction of labor which at various stages has been 
applied by some vendor to what we here call material. 
In addition, there is the prospect^ of greater discounts 
when purchasing in large quantities. 

In the graphs shown in Figs. 3 and 4, the curve for 
material reduction applying to raw material is given 
as a ninety-five percent curve (exponent of .0732). For 
purchased material this factor is shown at eighty-eight 
percent (exponent of .184). By purchased material is 
meant such items as wheels, oleo struts, instruments, 
engines and starters, and accessories of a nature usually 
procured from outside by airplane manufacturers. The 
change in factor to eighty-eight percent instead of 
ninety-five percent when comparing purchased raw ma-
terial is brought about by the greater proportion of labor 
present in the former. The item of purchased material 

(and particularly for engines, propellers, and instru-
ments) is, in reality, not truly represented by a straight 
line in quantities up to one or two hundred as shown in 
Fig. 3 and as used by an airplane manufacturer in that 
the purchased material vendor is the supplier to many 
airplane manufacturers and thus is constantly manu-
facturing in greater quantities than is the airplane 
manufacturer. It should also be noted that frequently 
the same purchased item is used several times in one 
airplane, further emphasizing the above principle. 
Nevertheless, if intelligent allowance of this fact is made 
for special cases, the curves may be used satisfactorily. 
In the preparation of actual estimates it is best to make 
a third material item of engines, propellers, and instru-
ments using prices received from actual quotations only 
reduced by the amounts obtainable from discounts 
securable after negotiation with the vendor, noting how-
ever from the general principles of the curves, the 
nature of reductions in large quantities which it is 
reasonable to expect. 

Overhead 

The overhead, or burden, varies, within limits, with 
quantity. The exact amount fluctuates greatly for dif-
ferent cases, depending, for example, on whether a 
particular factory is engaged in the manufacture of one 
type of plane or of many types. The following relation-
ship shows for one particular factory the type of over-
head variation which maintains. When this factory 
was employing five hundred workmen, the overhead 
ran one hundred percent; at one thousand workmen, 
this was reduced to seventy-five percent; and at fifteen 
hundred workmen to sixty percent. It is probable that 
the curve would flatten out above that amount and then, 
in very large quantities, increase in amount. In com-
bining factors of labor, material, and overhead to deter-
mine a suitable curve for direct application to the whole 
airplane, a figure of seventy percent for overhead has 
been used in this paper. 

Complete Airplane 

In Fig. 4 there is shown a curve for use in comparing 
the cost of the complete airplane in different quantities. 

Yaritiian of Cost wit/i Quantity 
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 Power law decay of cost with
number of planes produced.

 “The present writer started
his studies of the variation of
cost with quantity in 1922.”

https://pdodds.w3.uvm.edu//research/papers/others/everything/wright1936a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/wright1936a.pdf
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Scaling laws for technology production:

 “Statistical Basis for Predicting Technological Progress”
Nagy et al., PLoS ONE, 2013. [31]

 𝑦𝑡 = stuff unit cost; 𝑥𝑡 = total amount of stuff made.

 Wright’s Law, cost decreases as a power of total stuff
made: [37]

𝑦𝑡 ∝ 𝑥−𝑤
𝑡 .

 Moore’s Law, framed as cost decrease connected
with doubling of transistor density every two years: [30]

𝑦𝑡 ∝ 𝑒−𝑚𝑡.

 Sahal’s observation that Moore’s law gives rise to
Wright’s law if stuff production grows exponentially: [32]

𝑥𝑡 ∝ 𝑒𝑔𝑡.

 Sahal + Moore gives Wright with 𝑤 = 𝑚/𝑔.

http://en.wikipedia.org/wiki/Moore's_law
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production data for a period of at least 10 years, with no missing
years in between. This inclusive approach to data gathering was
required to construct a large dataset, which was necessary to
obtain statistically significant results. The resulting 62 datasets are
described in detail in File S1.

These datasets almost certainly contain significant measurement
and estimation errors, which cannot be directly quantified and are
likely to increase the error in forecasts. Including many
independent data sets helps to ensure that any biases in the
database as a whole are random rather than systematic,
minimizing their effects on the results of our analysis of the
pooled data.

To compare the performance of each hypothesis we use
hindcasting, which is a form of cross-validation. We pretend to
be at time i and make a forecast ŷy(f ,d,i)

j for time j using hypothesis
(functional form) f and data set d, where jwi. The parameters for

each functional form are fitted using ordinary least squares based
on all data prior to time i, and forecasts are made based on the
resulting regression. We score the quality of forecasts based on the
logarithmic forecasting error:

efdij~ log y(d)
j { log ŷy(f ,d,i)

j : ð5Þ

The quality of forecasts is examined for all datasets and all
hypotheses (and visualized as a three-dimensional error mountain,
as shown in File S1). For Wright’s law, an illustration of the growth
of forecasting errors as a function of the forecasting horizon is
given in Fig. 1.

An alternative to our approach is to adjust the intercepts to
match the last point. For example, for Moore’s law this
corresponds to using a log random walk of the form

Figure 3. Three examples showing the logarithm of price as a function of time in the left column and the logarithm of production as
a function of time in the right column, based on industry-wide data. We have chosen these examples to be representative: The top row
contains an example with one of the worst fits, the second row an example with an intermediate goodness of fit, and the third row one of the best
examples. The fourth row of the figure shows histograms of R2 values for fitting g and m for the 62 datasets.
doi:10.1371/journal.pone.0052669.g003

Predicting Technological Progress

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e52669



log ytz1~ log yt{mzn(t), where n(t) is an IID noise term (see
File S1). We have not done this here to be consistent with the way
these hypotheses have been presented historically. The method we
have used also results in more stable errors.

Developing a statistical model to compare the competing
hypotheses is complicated by the fact that errors observed at
longer horizons tend to be larger than those at shorter horizons,
and errors are correlated across time and across functional forms.
After comparing many different possibilities (as discussed in detail
in File S1), we settled on the following approach. Based on a
search of the family of power transformations, which is known for
its ability to accommodate a range of variance structures, we take
as a response the square root transformation of the logarithmic
error. This response was chosen to maximize likelihood when
modeled as a linear function of the hindcasting horizon ~ target
{ origin ~j{i, using a linear mixed effects model.

Specifically, we use the following functional form to model the
response:

rfdij:Defdij D0:5~af zadz(bf zbd )(j{i)zEfdij , ð6Þ

where rfdij is the expected root error. The parameters af and bf

depend on the functional form and are called fixed effects because
they are the same for all datasets. af is the intercept and bf is the

slope parameter.
The parameters ad and bd depend on the dataset, and are called

random effects because they are not fitted independently but are

instead treated as dataset-specific random fluctuations from the
pooled data. The quantities ad and bd are additive adjustments to
the average intercept and slope parameters af and bf , respectively,

to take into account the peculiarities of each dataset d.
In order to avoid adding 62 ad parameters plus 62 bd

parameters, we treated the
ad

bd

! "
pair as a two-dimensional

random vector having a bivariate normal distribution with mean

0
0

! "
and variance-covariance matrix

y2
a yab

yab y2
b

! "
. This

approach dramatically reduces the number of parameters. We
parameterize the dataset-specific adjustments as random devia-

tions from the average
af

bf

! "
at a cost of only 3 additional

parameters instead of 2 | 62 ~ 124. This parsimonious approach
makes maximum likelihood estimation possible by keeping the
number of parameters in check.

Finally, we add an Efdij random field term to take into account
the deviations from the trend. This is assumed to be a Gaussian

stochastic process independent of the
ad

bd

! "
random vector,

having mean 0, and given ad and bd , having variance equal to a

positive s2 times the fitted values:

Figure 4. An illustration that the combination of exponentially increasing production and exponentially decreasing cost are
equivalent to Wright’s law. The value of the Wright parameter w is plotted against the prediction m=g based on the Sahal formula, where m is the
exponent of cost reduction and g the exponent of the increase in cumulative production.
doi:10.1371/journal.pone.0052669.g004

Predicting Technological Progress

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e52669
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Size range (in grams) and cell differentiation:

10−13 to 108 g, p. 3,

McMahon and Bonner [26]
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Scaling of Specialization:

J. theor. Biol. (2002) 218, 215–237
doi:10.1006/yjtbi.3070, available online at http://www.idealibrary.com on

Scaling of Differentiation in Networks: Nervous Systems, Organisms,
Ant Colonies, Ecosystems, Businesses, Universities, Cities,

Electronic Circuits, and Legos

M. A. Changizinw, M. A. McDannaldw and D.Widdersw

wDepartment of Psychological and Brain Sciences, Duke University, Durham, NC 27708-0086, U.S.A.

(Received on 10 September 2001, Accepted in revised form on 25 April 2002)

Nodes in networks are often of different types, and in this sense networks are differentiated.
Here we examine the relationship between network differentiation and network size in
networks under economic or natural selective pressure, such as electronic circuits (networks
of electronic components), Legost (networks of Legot pieces), businesses (networks of
employees), universities (networks of faculty), organisms (networks of cells), ant colonies
(networks of ants), and nervous systems (networks of neurons). For each of these we find that
(i) differentiation increases with network size, and (ii) the relationship is consistent with a
power law. These results are explained by a hypothesis that, because nodes are costly to build
and maintain in such ‘‘selected networks’’, network size is optimized, and from this the
power-law relationship may be derived. The scaling exponent depends on the particular kind
of network, and is determined by the degree to which nodes are used in a combinatorial
fashion to carry out network-level functions. We find that networks under natural selection
(organisms, ant colonies, and nervous systems) have much higher combinatorial abilities than
the networks for which human ingenuity is involved (electronic circuits, Legos, businesses,
and universities). A distinct but related optimization hypothesis may be used to explain
scaling of differentiation in competitive networks (networks where the nodes themselves,
rather than the entire network, are under selective pressure) such as ecosystems (networks of
organisms).

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

While there is a considerable literature studying
the scaling properties of network connectivity
[e.g. see the literature springing from the papers
by Watts & Strogatz (1997) and Barab!asi &
Albert (1999), and also Changizi (2001a)], there

has been comparably little attention given to one
of the most important features of networks: that
nodes within networks come in different types.
Our main purpose is to examine the relationship
between network differentiation (i.e. the number
of node types) and network size (i.e. the total
number of nodes) among those kinds of network
that are under selective pressure, whether it be
economic or natural selection. We call such
networks selected networks. Consider two gen-
eral relationships one might a priori expect.
The first is that there is a finite set of node

nCorresponding author’s current address: Sloan-Swartz
Center for Theoretical Neurobiology, California Institute
of Technology, Pasadena, CA 91125, USA. Tel.: +1-919-
660-5641; fax: +1-916-660-5726.
E-mail address: changizi@changizi.com (M.A. Changizi).

0022-5193/02/$35.00/0 r 2002 Elsevier Science Ltd. All rights reserved.

“Scaling of Differentiation in Networks:
Nervous Systems, Organisms, Ant Colonies,
Ecosystems, Businesses, Universities, Cities,
Electronic Circuits, and Legos”
Changizi, McDannald, and Widders,
J. Theor. Biol, 218, 215–237, 2002. [8]

lower than 2, and this may explain the
lower combinatorial degree of around 1.4.
Via similar reasoning, if a network possessed
attachments for which m (rather than 2) pieces
must simultaneously physically connect, we
would expect a maximum combinatorial degree
of m:

3.3. BUSINESSES AND UNIVERSITIES:

NETWORKS OF PEOPLE

There exists a long tradition of looking at
differentiation as a function of business size (e.g.
Simmel, 1902; Caplow, 1957; Hall et al., 1967;
Pugh et al., 1968; Blau, 1970; Blau & Schoen-
herr, 1971; Childers et al., 1971; and see reviews
by Kimberly, 1976; Slater, 1985), but these
researchers commonly only report the correla-
tion of degree of differentiation and organiza-
tion size. In the few cases where degree of
differentiation is plotted against organization
size (e.g. Blau, 1970; Blau & Schoenherr, 1971;
Childers et al., 1971), log–log plots were not
used, and the possibility that the data may
conform to power laws was not investigated.
Figure 4 shows log–log and semi-log plots of
degree of differentiation vs. organization size:
two are for military organizations [(a) and (b)]
[using data from Childers et al. (1971, Fig. 2)],
one from universities as businesses (c) [using
data we obtained ourselves by going to uni-
versity web sites: total number of employees was

often obtainable from university ‘‘at-a-glance’’
pages; the number of employee types was (less
often) obtainable at human resources sites,
where each job type at the university is listed],
and one from employment insurance companies
(d) [using data from Blau & Schoenherr (1971,
Figs 3-2)]. Differentiation increases in each
kind of network as a function of size. Although
each plot is, in terms of the correlation, better
described by a power law than by a logarithmic
model, the logarithmic model can be rejected
only in military vessels; in the other three kinds
of business, neither the power law nor logarith-
mic model can be rejected. (See ppower and plog
values in Table 1.) The exponents are 0.63 for
military vessels (combinatorial degree d ¼ 1:6),
0.88 for military offices (d ¼ 1:14), 0.73 for
universities (d ¼ 1:37), and 0.33 for employment
insurance companies (d ¼ 3).
We may also look at universities not as

networks of employees generally, but rather as
networks of faculty, where two faculty are
considered the same type if they are members
of the same department. The number of depart-
ments is used as the measure of the number of
faculty types. The number of students is used as
the measure of the number of faculty, since
across universities they scale nearly proportion-
ally; namely, the number of faculty scales against
the number of students as a power law with
exponent 0.987 (n ¼ 89; R2 ¼ 0:743) [this plot is
not shown here; and the data for it are taken

y = 0.7092x + 0.2706
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Fig. 3. Log–log (base 10) (left) and semi-log (right) plots of the number of Lego piece types vs. the total number of parts
in Lego structures (n ¼ 391). To help to distinguish the data points, logarithmic values were perturbed by adding a random
number in the interval ["0.05, 0.05], and non-logarithmic values were perturbed by adding a random number in the interval
["1, 1].
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reused.
 Claim: Natural selection produces high 𝑑 systems.
 Claim: Engineering/brains produces low 𝑑

systems.



The PoCSverse
Scaling
92 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

𝐶 ∼ 𝑁1/𝑑, 𝑑 ≥ 1:
 𝐶 = network differentiation = # node types.
 𝑁 = network size = # nodes.
 𝑑 = combinatorial degree.
 Low 𝑑: strongly specialized parts.

 High 𝑑: strongly combinatorial in nature, parts are
reused.

 Claim: Natural selection produces high 𝑑 systems.
 Claim: Engineering/brains produces low 𝑑

systems.



The PoCSverse
Scaling
92 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

𝐶 ∼ 𝑁1/𝑑, 𝑑 ≥ 1:
 𝐶 = network differentiation = # node types.
 𝑁 = network size = # nodes.
 𝑑 = combinatorial degree.
 Low 𝑑: strongly specialized parts.
 High 𝑑: strongly combinatorial in nature, parts are

reused.

 Claim: Natural selection produces high 𝑑 systems.
 Claim: Engineering/brains produces low 𝑑

systems.



The PoCSverse
Scaling
92 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

𝐶 ∼ 𝑁1/𝑑, 𝑑 ≥ 1:
 𝐶 = network differentiation = # node types.
 𝑁 = network size = # nodes.
 𝑑 = combinatorial degree.
 Low 𝑑: strongly specialized parts.
 High 𝑑: strongly combinatorial in nature, parts are

reused.
 Claim: Natural selection produces high 𝑑 systems.

 Claim: Engineering/brains produces low 𝑑
systems.



The PoCSverse
Scaling
92 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

𝐶 ∼ 𝑁1/𝑑, 𝑑 ≥ 1:
 𝐶 = network differentiation = # node types.
 𝑁 = network size = # nodes.
 𝑑 = combinatorial degree.
 Low 𝑑: strongly specialized parts.
 High 𝑑: strongly combinatorial in nature, parts are

reused.
 Claim: Natural selection produces high 𝑑 systems.
 Claim: Engineering/brains produces low 𝑑

systems.



The PoCSverse
Scaling
93 of 106

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology

Specialization

References

Table 1
Summary of results*

Network Node No. data
points

Range of
logN

Log–logR2 Semi-logR2 ppower=plog Relationship
between C
and N

Comb.
degree

Exponent v
for type-net
scaling

Figure
in text

Selected networks
Electronic circuits Component 373 2.12 0.747 0.602 0.05/4e!5 Power law 2.29 0.92 2

Legost Piece 391 2.65 0.903 0.732 0.09/1e!7 Power law 1.41 F 3

Businesses
military vessels Employee 13 1.88 0.971 0.832 0.05/3e!3 Power law 1.60 F 4
military offices Employee 8 1.59 0.964 0.789 0.16/0.16 Increasing 1.13 F 4
universities Employee 9 1.55 0.786 0.749 0.27/0.27 Increasing 1.37 F 4
insurance co. Employee 52 2.30 0.748 0.685 0.11/0.10 Increasing 3.04 F 4

Universities
across schools Faculty 112 2.72 0.695 0.549 0.09/0.01 Power law 1.81 F 5
history of Duke Faculty 46 0.94 0.921 0.892 0.09/0.05 Increasing 2.07 F 5

Ant colonies
caste¼ type Ant 46 6.00 0.481 0.454 0.11/0.04 Power law 8.16 F 6
size range¼ type Ant 22 5.24 0.658 0.548 0.17/0.04 Power law 8.00 F 6

Organisms Cell 134 12.40 0.249 0.165 0.08/0.02 Power law 17.73 F 7

Neocortex Neuron 10 0.85 0.520 0.584 0.16/0.16 Increasing 4.56 F 9

Competitive networks
Biotas Organism F F F F F Power law E3 0.3 to 1.0 F

Cities Business 82 2.44 0.985 0.832 0.08/8e-8 Power law 1.56 F 10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.e. logðNmax=NminÞ), (5) the log–log
correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-fit relationship
between differentiation C and organization size N (if one of the two models can be refuted with po0:05; otherwise we just write ‘‘increasing’’ to denote that neither model can be rejected), (9)
the combinatorial degree (i.e. the inverse of the best-fit slope of a log–log plot of C versus N), (10) the scaling exponent for how quickly the edge-degree d scales with type-network size C
(in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the literature.
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Shell of the nut:
 Scaling is a fundamental feature of complex

systems.

 Basic distinction between isometric and allometric
scaling.

 Powerful envelope-based approach: Dimensional
analysis.

 “Oh yeah, well that’s just dimensional analysis”
said the [insert your own adjective] physicist.

 Tricksiness: A wide variety of mechanisms give
rise to scalings, both normal and unusual.
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