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Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for‘large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

_ Barabasi and Albert,
o Science, 286, 509-511, 1999. I!

Times cited: ~ 23,532 (as of October 8, 2015)
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Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for‘large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

Barabasi and Albert,

, ) Science, 286, 509-511, 1999, [“!
Times cited: ~ 23,532 (as of October 8, 2015)

Somewhat misleading nomenclature...
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Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

Primary example: hyperlink network of the Web
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) =23, (B) = 2.1and (C) = 4.
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BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
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BA model

Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:

1. Growth—a new node appears at each time step
H=10,11,12,00
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Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:

1. Growth—a new node appears at each time step
H=10,11,12,00
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BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
e U B RN
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.
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Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
e U B RN
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.

In essence, we have a rich-gets-richer scheme.
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Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).

Step 1: start with m, disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
H=10,11,12,00
2. Each new node makes m links to nodes already
present.
3. Preferential attachment—Probability of (|
connecting to ith node is « k;. I:
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In essence, we have a rich-gets-richer scheme.
Yes, we've seen this all before in Simon’s model.

i



O utl i n e The PoCSverse

Scale-free
networks
14 of 57

Scale-fi
Scale-free networks cale-free

networks
Main story
Model details
Analysis

Amore plausible

5 mechanism
Analysis

Robustness

Krapivsky & Redner's
model

Generalized model
Analysis
Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References




The PoCSverse
BA m O d e I Scale-free

networks

15 0f 57

& Definition: A, is the attachment kernel for anode  neworie

networks
. Main story
with degree k.
Analysis
A more plausible
mechanism

Robustness

Krapivsky & Redner's
model

Generalized model
Analysis
Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

—

»

Lt",i <



The PoCSverse
BA m O d e | Scale-free

networks

15 of 57

& Definition: A, is the attachment kernel for a node  newerie.

networks

with degree k. Wl

Model details

<& For the original model: ootz

Amore plausible
mechanism

Robustness

Krapivsky & Redner’s
A L k model

Generalized model
Analysis
Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References




BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.

For the original model:

k()

Pattach(nOde i:t) e e A
Zj:(l) kj<t)
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.
For the original model:

; Ek;(t)
Poach(node 4,t) = T

> lE )

where N(t) = my + t is # nodes at time ¢

The PoCSverse
Scale-free
networks

15 of 57

Scale-free
networks



BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.

For the original model:

: k; (t) k,(t)
Pjttach(Node i, t) = N(t) e 1
B 2 50 DN )

where N(t) = my + t is # nodes at time ¢
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Definition: A, is the attachment kernel for a node  retworic
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.

For the original model:
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: k; (t) k,(t)
Pjttach(Node i, t) = N(t) e 1
B 2 50 DN )

where N(t) = my + t is # nodes at time ¢
and N, (t) is # degree k nodes at time ¢.
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Approximate analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is
ki N
E(k; ny1— ki n)=m N (D)

ek ()

Assumes probability of being connected to is
small.
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When (N + 1)th node is added, the expected S
increase in the degree of node i is L

ki N
E(k; ny1— ki n)=m 3

N(t) :
Zj:l kj (t)
Assumes probability of being connected to is
small. e
Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will References
be smooth and stable. N

Approximate k; n. 1 — k; n With &k, ,:

d ki (1)

55 fres g 7
kG =

g %)

where t = N(t) — m,.
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Deal with denominator: each added node brings m
new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k,(t)
g (t)
dt Zj:l kj(t)
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Deal with denominator: each added node brings m

new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

Chrogs i s TAONE e )
dt z‘,t—ﬂ”sz\,:<it> k;j(t) _m2mt
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Deal with denominator: each added node brings m

new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k;(t) k,;(t) 1

e RS e =m——= = —k,(t)
T, <t> (2

dt ijl k() 2mt 2t
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Deal with denominator: each added node brings m

new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k;(t) k,;(t) 1

e RS e =m——= = —k,(t)
T, <t> (2

dt ijl k() 2mt 2t

Rearrange and solve:

di,(t) dt
Bt 2t

The PoCSverse
Scale-free
networks

17 of 57

Scale-free
networks

\ear attachment

Nutshell

References




Deal with denominator: each added node brings m
new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k(1) SROE
7kAt:m NZ = m— = (t)
i, O] i

dt ijl k() 2mt 2t

Rearrange and solve:

dky(t) _d¢
kel e
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Deal with denominator: each added node brings m
new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k;(t) k,;(t) 1

e RS e =m——= = —k,(t)
T, <t> (2

dt ijl k() 2mt 2t

Rearrange and solve:

dky(t) _d¢
kel e

Next find ¢, ...
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So for i > m (exclude initial nodes), we must have

o=

1/2
) fort >1t; start-

The PoCSverse
Scale-free
networks

18 of 57

Scale-free
networks
Main story

Model details

Analysis

References

S e ]


http://en.wikipedia.org/wiki/Ponzi_scheme

The PoCSverse

Scale-free
networks
. 18 of 57
Know ith node appears at time Sam
networks
; i—mg fori>mg
. = Analysis
1,start 0 fOFZ S mo 2l

So for i > m (exclude initial nodes), we must have
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All node degrees grow as ¢!/~
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Know ith node appears at time

; [ i=mg fori>mg,
s e ) fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort > t; star-

k() =m (

l; start

All node degrees grow as ¢'/2 but later nodes have
larger ¢, «re Which flattens out growth curve.
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s e ) fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort > t; star-

ki, (t) :m(

l; start

All node degrees grow as ¢'/2 but later nodes have
larger ¢, «re Which flattens out growth curve.
First-mover advantage: Early nodes do best.
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Know ith node appears at time

; [ i=mg fori>mg,
s e ) fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort > t; star-

k() =m (

l; start

All node degrees grow as ¢'/2 but later nodes have
larger ¢, «re Which flattens out growth curve.

First-mover advantage: Early nodes do best.
Clearly, a Ponzi scheme (..
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Degree of node i is the size of the ith ranked node:

t

1/2
) fort >t; seart-

k, (t) :m(

ti,start

From before:

t S =g IO > g
(ol L ER R fori < mg

SO t; start ~ @ Which is the rank.
We then have:

D @ g i

Our connectiona=1/(y—1)ory=1+1/a then
gives

ly=1+1/(1/2)=3.|
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So what's the degree distribution at time ¢?
Use fact that birth time for added nodes is

distributed uniformly between time 0 and t:

dt start
Pr(t; start)dt; stare = 7%15
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Scale-free
networks

dt start
Pr(t; start)dt; stare = 71’15

Also use

1/2 o
t m=<t
ki(t)=m (t ) S I e
i,start




Degree distribution The PoCSverse

Scale-free
networks
. : % . 21 of 57
So what's the degree distribution at time ¢? Scale-free
networks
Use fact that birth time for added nodes is kbl
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dt start
Pr(ti,start)dti,start = %
Also use
1/2 2 Nutshell
t m*t
E.(t) = =t, Ll e
W1=m () s g ,

Transform variables—Jacobian:

dti,start__ m2t
di 7 R
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We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance (mild)
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) =23, (B) = 2.1and (C) = 4.
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Examples

Web

Web

Movie actors
Words (synonyms)

v =~ 2.1 for in-degree

v =~ 2.45 for out-degree
7 &2 D3

v~ 2.8
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Web ~ ~ 2.1 for in-degree
Web ~ =~ 2.45 for out-degree
Movie actors ~ ~2.3
Words (synonyms) =~ 2.8

The Internets is a different business...
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Let's look at preferential attachment (PA) a little
more closely.
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Let's look at preferential attachment (PA) a little
more closely. :

Amore plausible

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iocn (k) x k, we need to wperine
determine the constant of proportionality.

i f
We need to know what everyone’s degree is... il 2

PAis - an outrageous assumption of node
capability.

But a very simple mechanism saves the day...
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Mod

Instead of attaching preferentially, allow new Y
nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends’ friends.

Can also do this at random.

Assuming the existing network is random, we N

know probability of a random friend having Referoiney
degree k is

Qp x kPy

So rich-gets-richer scheme can now be seen to
work in a natural way.
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Robustness

“The “Robust yet Fragile” nature of the

i 83 e e
, Doyle et al.,
0 Proc. Natl. Acad. Sci., 2005, 14497-14502,
2005.

HOT networks versus scale-free networks

Same degree distributions, different
arrangements.

Doyle et al. take a look at the actual Internet.
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2001: Krapivsky & Redner (KR) “! explored the
general attachment kernel:

Pr(attach to node i) x A, = k¥

where A, is the attachment kernel and v > 0.

KR also looked at changing the details of the
attachment kernel.

KR model will be fully studied in CoNKS.
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http://en.wikipedia.org/wiki/Rate_equation

Generalized model

We'll follow KR's approach using rate equations (4.,

Here's the set up:

dnN 1
Ttk T [Ag_1Ng_1 — AgNg] + g
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We'll follow KR's approach using rate equations (4.,

Here's the set up:

dnN 1
Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.
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ditk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.
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Generalized model

We'll follow KR's approach using rate equations (4.,

Here's the set up:

dN 1
Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
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4. Ais the correct normalization (coming up).
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Generalized model

We'll follow KR's approach using rate equations (4.,

Here's the set up:

dN 1
Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
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We'll follow KR's approach using rate equations (4.,

Here's the set up:
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Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes

becoming degree k — 1 nodes.

A is the correct normalization (coming up).
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Generalized model

We'll follow KR's approach using rate equations (4.,

Here's the set up:

dN 1
Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.
2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.
3. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.
A is the correct normalization (coming up).
. Seed with some initial network
(e.g., a connected pair)
6. Detail: A, =0
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Generalized model

In general, probability of attaching to a specific

node of degree k at time t is

Pr(attach to node i) =

Ay,

A(t)
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Generalized model

In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = 2

A
where A(t) = Y07 ApNy(t).
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Generalized model

In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = 2

A(t)
where A(t) = Y07 ApNy(t).

E.g., for BAmodel, A, =kand A=3""_ kN(t).
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Generalized model

In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = 2

A
where A(t) = Y07 ApNy(t).

E.g., for BAmodel, A, =kand A=3""_ kN(t).

For A, = k, we have

oo

A) =D K Ny (t) =2t
k’=1
since one edge is being added per unit time.

Detail: we are ignoring initial seed network’s
edges.
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Generalized model

So now

dnN 1

Ttk it [ N AN | o0y
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solution:
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So now

dnN 1

Ttk it [ N AN | o0y
becomes

dnN 1

ditk T W= LYNG e kNl oy

As for BA method, look for steady-state growing
solution: N, = ngt.

We replace dN,, /dt with dnt/dt = n,,.
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Generalized model

So now

dnN 1

Ttk it [ N AN | o0y
becomes

dnN 1

Ttk T W= LYNG e kNl oy

As for BA method, look for steady-state growing
solution: N, = ngt.

We replace dN,, /dt with dnt/dt = n,,.
We arrive at a difference equation:

Ny = 2111 [(k— Dng_1f — kngf] + 051
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Universality?
As expected, we have the same result as for the
BA model:
N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
with the attachment kernel A, ?
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As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
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Again, we're asking if the result v = 3 universal (4?

KR’s natural modification: A, = k¥ with v # 1.

The PoCSverse
Scale-free
networks

43 of 57

Scale-free
networks
Main story

Model details

Nutshell



http://en.wikipedia.org/w/index.php?title=Universality_%28dynamical_systems%29&oldid=204738455

Universality?

As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
with the attachment kernel A, ?

Again, we're asking if the result v = 3 universal (4?

KR’s natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!
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Universality?

As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around

with the attachment kernel A, ?
Again, we're asking if the result v = 3 universal (47

KR’s natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!

Keep A, linear in k but tweak details.
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As expected, we have the same result as for the
BA model: sl

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around

with the attachment kernel A, ?
Again, we're asking if the result v = 3 universal (47

KR’s natural modification: A, = k¥ with v # 1. Kefectn

But we'll first explore a more subtle modification o
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Universality?

Recall we used the normalization:

A(t) = > K Ny (t) = 2t for large t.
k’=1

We now have

A(t) = Z A Ny (1)
k=1
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Recall we used the normalization:
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Universality?

Recall we used the normalization:

A(t) = > K Ny (t) = 2t for large t.

k’=1

We now have

Alt) = Z A Ny (t)

k’=1
where we only know the asymptotic behavior of
A,.
We assume that A = it

We'll find p later and make sure that our
assumption is consistent.
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Universality?

Recall we used the normalization:

A(t) = > K Ny (t) = 2t for large t.
k=1

We now have

Alt) = Z A Ny (t)

k’=1
where we only know the asymptotic behavior of
A,.
We assume that A = it

We'll find p later and make sure that our
assumption is consistent.

As before, also assume N (t) = n,t.
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Universality?
For A, = k we had

[ Dngl o ko + 8,
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Universality?
For A, = k we had

[ Dngl o ko + 8,
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1
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Universality?

Time for pure excitement: Find asymptotic
behavior of n, given A, — k as k — oo.

For large k, we find:
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ng = — oc kit
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Now we need to find pu.

Our assumption again: A = ut =Y.~ N.(t)A,
Since N, = n,t, we have the simplification

fli— Z:il ny Ag

Now subsitute in our expression for n,:
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Now we need to find pu.
Our assumption again: A = ut =Y.~ N.(t)A,
Since N, = n,t, we have the simplification
(e o]
fli— Zkzl ny Ag
Now subsitute in our expression for n,:
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Universality?

Now we need to find pu.
Our assumption again: A = ut =Y.~ N.(t)A,
Since N, = n,t, we have the simplification
(e o]
fli— Zkzl ny Ag
Now subsitute in our expression for n,:

o k
Closed form expression for L
We can solve for i in some cases.
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Now we need to find p.

Our assumption again: A = ut = 37" N, (t)A, ass

Since N, = n,t, we have the simplification
(e o]

B = Zkzl ny Ay

Now subsitute in our expression for n,:

w-Si g

Closed form expression for L il
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L
A

We can solve for i in some cases.

Our assumption that A = ut looks to be not too f
horrible.
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Universality?

Consider tunable A; = aand A4, = k for k > 2.
Again, we can find v = p + 1 by finding p.
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Consider tunable A; = aand A4, = k for k > 2.
Again, we can find v = p + 1 by finding p.
Closed form expression for u:
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Universality?

Consider tunable A; = aand A4, = k for k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:
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e Tt et 1)
#mathisfun
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Since v = p + 1, we have
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Universality?

Consider tunable A; = aand A4, = k for k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:

i (k+ 12+ p)
—  Dk+p+1)

#mathisfun

14+ v1+ 8«

b L= o= = 3

Since v = p + 1, we have
0<a<oo=2<y<

Craziness...
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
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Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).

aka Weibull distributions.
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Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner:

—v —c, k'Y+correction terms
n, ~ k= Ve 1 :

Stretched exponentials (truncated power laws). References
aka Weibull distributions. |
Universality: now details of kernel do not matter. ‘
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Scale-free
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Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner:

—v —c, k'Y+correction terms
n, ~ k= Ve 1 :

Stretched exponentials (truncated power laws). References
aka Weibull distributions. |
Universality: now details of kernel do not matter. IE
Distribution of degree is universal providing v < 1.

i
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Sublinear attachment kernels

Fori 2 <<t il

B <k1*l’,21*V>
AT el 20 e ST

Foril/si=ir <1 /2

pl-v 2 rl—2v
Ny ~ k Ve Hiw E ST

And for 1/(r +1) < v < 1/r, we have r pieces in
exponential.
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Now a winner-take-all mechanism.

One single node ends up being connected to
almost all other nodes.
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Scale-free
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Vol

Rich-get-much-richer: A more plausie

Robustness

Ak} (7 ky Wlth V1= 1.

Now a winner-take-all mechanism.

One single node ends up being connected to
almost all other nodes.

For v > 2, all but a finite # of nodes connect to one
node.
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1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features
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to dynamics...
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Main story

Obvious connections with the vast extant field of
graph theory.

But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.

Two main areas of focus:

1. Description: Characterizing very large networks ot
2. Explanation: Micro story = Macro features Bl

Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

Still much work to be done, especially with respect f
to dynamics... #excitement
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=axrTxEVQqN4?rel=0
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