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Two of the many things we struggle with
cognitively:
1. Probability.
© Ex. The Monty Hall Problem.&

here @

2. Logarithmic scales.
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I

; L B “Numbers."#.

The PoCSverse
Power-Law Size
Distributions

5 of 67

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References

Pl~x"


http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.sciencenews.org/view/generic/id/60598/title/When_intuition_and_math_probably_look_wrong
http://en.wikipedia.org/wiki/Boy_or_Girl_paradox
http://www.radiolab.org/2009/nov/30/
http://en.wikipedia.org/wiki/Benford's_law
https://en.wikipedia.org/wiki/Dunning–Kruger_effect
https://en.wikipedia.org/wiki/Dunning–Kruger_effect

Two of the many things we struggle with
cognitively:
1. Probability.
© Ex. The Monty Hall Problem.&

here @

2. Logarithmic scales.

On counting and logarithms:

el

LRy ‘ <o Listen to Radiolab’s 2009 piece:

Also to be enjoyed: the magnificence of the
Dunning-Kruger effect (&'
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Homo probabilisticus?

A parent has two children.

What is the probability that both children are girls?

A parent has two children.
We know one of them is a girl.
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A parent has two children.
We know one of them is a girl born on a Tuesday.

What is the probability that both children are girls?

A parent has two children.

We know one of them is a girl born on December
3
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Wealth distribution in the United States:

mTop20% =m2nd20% = Middle 20% m4th20%  m Bottom 20%
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Percent Wealth Owned

Fig. 2. The actual United States wealth distribution plotted against the estimated and ideal
distributions across all respondents. Because of their small percentage share of total
wealth, both the “4th 20%" value (0.2%) and the “Bottom 20%" value (0.1%) are not visible
in the “Actual” distribution.

“Building a better America—One wealth quintile at a time”
Norton and Ariely, 2011.12!

The PoCSverse
Power-Law Size
Distributions

9 of 67

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References

Pl~x"



LAWS oF
DECAYING POWER.

5
| S




Wealth distribution in the United States: !

Actual

Estimated (< $50K}
Estimated [$50-100K)
Estimated (> $100K)
Estimated (Bush Voters)
Estimated (Kerry Voters)
Estimated (Women)

Estimated (Men)

Ideal (< $50K)

Ideal ($50-100K)
Ideal (> $100K)
Ideal (Bush Voters)
Ideal (Kerry Voters)
Ideal (Women)
Ideal (Men}

Fig. 3. The actual United States wealth distribution plotted against the estimated and ideal
distributions of respondents of different income levels, political affiliations, and genders.
Because of their small percentage share of total wealth, both the “4th 20%” value (0.2%)

® Top 20% ®2nd20% ® Middle 20% m 4th 20% = Bottom 20%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent Wealth Owned

and the “Bottom 20%" value (0.1%) are not visible in the “Actual” distribution.
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The sizes of many systems' elements appear to obey an

inverse power-law size distribution:

P(size=xz)~cx ™

wherer Qi<iq S picp |

and ~ > 1.
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The sizes of many systems' elements appear to obey an
inverse power-law size distribution:

P(size=xz)~cx ™

wherer Qi<iz S picp L and iy >

ZTmin = lower cutoff, z,,,, = upper cutoff

Negative linear relationship in log-log space:

log J1B(z) = log, c-—~log - o
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The sizes of many systems' elements appear to obey an
inverse power-law size distribution:

P(size=xz)~cx ™
wherer Qi<iz S picp L and iy >
ZTmin = lower cutoff, z,,,, = upper cutoff
Negative linear relationship in log-log space:
log J1B(z) = log, c-—~log - o

We use base 10 because we are good people.
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Size distributions:

Usually, only the tail of the distribution obeys a
power law:

P(x) ~ cx 7 for z large.

< Still use term ‘power-law size distribution.’

&> Other terms:

&) Fat-tailed distributions.
&) Heavy-tailed distributions.
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Size distributions:

Usually, only the tail of the distribution obeys a
power law:

P(x) ~ cx 7 for z large.

< Still use term ‘power-law size distribution.’

&> Other terms:

&) Fat-tailed distributions.
&) Heavy-tailed distributions.

Beware:

<% Inverse power laws aren't the only ones:
lognormals (4, Weibull distributions &, ...
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Size distributions:

Word frequency

Node degree in networks: # friends, # hyperlinks,
etc.

# citations for articles, court decisions, etc.

Pk) ek

where kpin < k < kmax

Obvious fail for k& = 0.
Again, typically a description of distribution’s tail.
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Word frequency:

rank word % q rank word % q
T the 6.8872 1945, apply 0.0055
2. of 3.5839 1946. vital 0.0055
3. and 2.8401 1947. September 0.0055
4. to 2.5744 1948. review 0.0055
5. a 2.2996 1949. wage 0.0055
6. in 2.1010 1950. motor 0.0055
7. that 1.0428 1951. fifteen 0.0055
8. is 0.9943 1952. regarded 0.0055
9. was 0.9661 1953. draw 0.0055

10. he 0.9392 1954. wheel 0.0055
11 for 0.9340 1955. organized 0.0055
12. it 0.8623 1956. vision 0.0055
13.  with 0.7176 1957. wild  0.0055
14. as 0.7137 1958. Palmer 0.0055
115 his 0.6886 1959. intensity  0.0055
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http://wordcount.org

by Randall Munroe (2015). %!

BOAT THAT GOES UNDER THE SEA
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The long tail of knowledge:

Cited by

Citations
h-index
i10-index

2014 2015 2016 2017 2018 2019 2020 2021

All

432350
155
369

VIEW ALL

Since 2016

165872
104
277

31000

23250

15500

7750

0

Take a scrolling voyage
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The statistics of surprise—words: i o o

Distributions

21 0f 67
First—a Gaussian example: Our Intuition
1 Definition
P(z)dz = ——e(@—#)/20%dy Examples
\V2ro Wild vs. Mild
CCDFs
||r34ea I Iog[-log Zipf's law
» Zipf < CCDF
03 - References
— T
o2 A
& g—lS
0.1 0
0 -2

0 5 10 5 20 %3 ) -1 0 1 2
T logigx

mean = 10, variance o2 = 1.

Activity: Sketch P(z) ~ 71 forxz = 1toz = 10.



The statistics of surprise—words:

linear:

1200,

1000
800
= 600
400

200

¢, = Normalized frequency of occurrence of word
w (%).

N, = number of distinct words that have a
normalized frequency of occurrence q.

.8 gihe = 6.9%, N, _=1.
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The statistics of surprise—words:

linear: log-log
1200 3
1000 3
800 25
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=% 600 20 2
& 15
400 2
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200 “ .
0.5 -
0 1 2 3 4 5 6 7 4;;
q =25 -2 -1.5 -1 -0.5 0 0.5 1

log,, 4

¢, = Normalized frequency of occurrence of word
w (%).

i number of distinct words that have a
normalized frequency of occurrence q.
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The statistics of surprise—words:

linear: log-log
2500, 35
3
2000
25
1500 /T
Sl = 2]
A =]
1000 e 15 \‘\
) \
S N
1 13
500
L 05
0
0 1 2 3 4 5 6 7 S5 5 O s 0 o5
q log, ¢

Also known as the ‘Exceedance Probability.’
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My, what big words you have ... lﬁaigﬁi&eﬁ;
Distributions
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capitalizes on word frequency following a
heavily skewed frequency distribution with a : 3
decaying power-law tail. < i

(story )


http://testyourvocab.com/
https://www.youtube.com/watch?v=3DxMSufIIqY
https://www.youtube.com/watch?v=3DxMSufIIqY
https://www.greatbigstory.com/stories/the-official-pronouncer-of-the-scripps-national-spelling-bee
https://www.youtube.com/watch?v=Nfa80vMQn6c

The statistics of surprise:

N(M>m) [earthquakes/year]

10°

10*

10° ,

- Log-log plot
¥ Bl i Base 10

o : Slope = -1

w0t | T | N(M >m)xm?!
105

(R TR0 o T B e o et T S
Magnitude m = log,(S)

From both the very awkwardly similar Christensen
et al. and Bak et al.:
“Unified scaling law for earthquakes”* '
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earthquake is how misleading history can be. In the
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large—nothing larger than magnitude eight—had
struck in the Japan subduction zone.
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to assumptions about how large a tsunami might
strike the coast.’
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The statistics of surprise:

‘What is perhaps most surprising about the Japan
earthquake is how misleading history can be. In the
past 300 years, no earthquake nearly that
large—nothing larger than magnitude eight—had
struck in the Japan subduction zone. That, in turn, led
to assumptions about how large a tsunami might
strike the coast.’

“It did them a giant disservice,” said Dr. Stein of the
geological survey. That is not the first time that the
earthquake potential of a fault has been
underestimated. Most geophysicists did not think the
Sumatra fault could generate a magnitude 9.1
earthquake, ...
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: &2 | "Geography and similarity of regional
. ® | cuisinesin China"(%
Zhu et al.
[}
s PLOS ONE, 8, 79161, 2013, %]
109 Fraction of ingredients
ol O — that appear in at least &
R \ recipes.
£10° : g i
} Oops in notation: P(k) is
° the Complementary
107 3 " Cumulative Distribution

Occurrence of ingredients (k) P (k)
>
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LA
A

“On a class of skew distribution

Herbert A. Simon,
Biometrika, 42, 425-440, 1955.1°]

“"Power laws, Pareto distributions and Zipf's
M. E. J. Newman,

Contemporary Physics, 46, 323-351,
2005.11

“Power-law distributions in empirical

Clauset, Shalizi, and Newman,
SIAM Review, 51, 661-703, 2009. [°!
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Size distributions:

Some examples:
< Earthquake magnitude (Gutenberg-Richter

lawZ): 8 P(M) oc M2
& # war deaths: " P(d) oc d=1-8
& Sizes of forest fires ”!
& Sizes of cities: [ P(n) oc n=2-1
&% # links to and from websites [%!

<% Note: Exponents range in error
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< Distributions of tree trunk diameters: P(d) oc d2.
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< The gravitational force at a random point in the
universe: 1 P(F) « F~5/2, (See the Holtsmark

< Diameter of moon craters:!"" P(d) oc d 3.
& Word frequency: 'l e.g., P(k) « k=22 (variable).
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< Diameter of moon craters:!"" P(d) oc d 3.
& Word frequency: 'l e.g., P(k) « k=22 (variable).
<o # religious adherents in cults: ™ P(k) oc k~1-840-1,
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Size distributions:

More examples:

< # citations to papers:® 3! P(k) oc k5.
< Individual wealth (maybe): P(W) oc W2,

< Distributions of tree trunk diameters: P(d) oc d2.

< The gravitational force at a random point in the
universe: 1 P(F) « F~5/2, (See the Holtsmark

< Diameter of moon craters:!"" P(d) oc d 3.
& Word frequency: 'l e.g., P(k) « k=22 (variable).

<o # religious adherents in cults: ™ P(k) oc k~1-840-1,

<& # sightings of birds per species (North American
Breeding Bird Survey for 2003): P!
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Size distributions:

More examples:

< # citations to papers:® 3! P(k) oc k5.
< Individual wealth (maybe): P(W) oc W2,

< Distributions of tree trunk diameters: P(d) oc d2.

< The gravitational force at a random point in the
universe: 1 P(F) « F~5/2, (See the Holtsmark

< Diameter of moon craters:!"" P(d) oc d 3.
& Word frequency: 'l e.g., P(k) « k=22 (variable).

<o # religious adherents in cults: ™ P(k) oc k~1-840-1,

<& # sightings of birds per species (North American
Breeding Bird Survey for 2003): [°!
P(k‘) o k72.1i0.1.
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Basic parameters of the data sets described in section 6, along with their power-law fits and the co ding p-values (: 1l values
are denoted in bold).

Quantity n (z) o Tmax i Ngail p

count of word use 18855 11.14 148.33 14 086 {TEET2 2958 £ 987 0.49
protein interaction degree 1846 2.34 3.05 56 52 204 £ 263 0.31
metabolic degree 1641 5.68 17.81 468 4+1 748 & 136 0.00
Internet degree 22688 5.63 37.83 2583 21+9 770 £+ 1124 0.29
telephone calls received 51360423 3.88 179.09 375746 120 £49 102 592 + 210 147 0.63
intensity of wars 115 15.70 49.97 382 2.1£3.5 70+ 14 0.20
terrorist attack severity 9101 4.35 31.58 2749 12+4 547 £ 1663 0.68
HTTP size (kilobytes) 226 386 7.36 57.94 10971 36.25 + 22.74 6794 £ 2232 0.00
species per genus 509 5.59 6.94 56 4+2 233+ 138 0.10
bird species sightings 591 | 3384.36  10952.34 138705 6679 £ 2463 66 & 41 0.55
blackouts (x10%) 211 253.87 610.31 7500 230 + 90 59+ 35 0.62
sales of books (x 103) 633 | 1986.67 1396.60 19077 2400 £ 430 139+ 115 0.66
population of cities (x10%) 19447 9.00 77.83 8009 52.46 £11.88  2.37(8) 580 £ 177 0.76
email address books size 4581 12.45 21.49 333 57+21 3.5(6) 196 + 449 0.16
forest fire size (acres) 203 785 0.90 20.99 4121 6324 + 3487 2.2(3) 521 £ 6801 0.05
solar flare intensity 12773 689.41 6520.59 231300 323 +89 1.79(2) 1711 + 384 1.00
quake intensity (x10%) 19302 24.54 63 096 0.794 £ 80.198  1.64(4) 11697 & 2159 0.00
religious followers (x10%) 103 5 1050 3.85+1.60  1.8(1) 39 + 26 0.42
freq. of surnames (x 10%) 2753 50.59 2502 111.92 +40.67  2.5(2) 239 + 215 0.20
net worth (mil. USD) 400 | 2388.69 46 000 900 + 364 2.3(1) 302 £+ 77 0.00
citations to papers 415229 16.17 8904 160 + 35 3.16(6) 3455 £ 1859 0.20
papers authored 401 445 7.21 16.52 1416 133+13 4.3(1) 988 £ 377 0.90
hits to web sites 119724 9.83 392.52 129 641 2EE 131 1.81(8) 50981 4 16 898 0.00
links to web sites 241428853 9.15 106871.65 1199466 3684 £ 151 2.336(9) 28 986 + 1560 0.00

We'll explore various exponent measurement
techniques in assignments.
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Definition
Mediocristan versus Extremistan Examples
5 : Wild vs. Mild
Mild versus Wild (Mandelbrot) s i
Example: Height versus wealth. Zipfs law
Zipf < CCDF
References
THE

BLACK SWAN
See “The Black Swan” by Nassim

ﬁ Taleb. ['®

= Terrible if successful framing:

The Impact of the

HIGCHLY \hl\’l;1)11\\tll Black SWanS are not that
surprising ...

Nassim Nicholas Taleb
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FIGURE 1: ONE THOUSAND AND ONE DAYS OF HISTORY
Examples
140 Wild vs. Mild
CCDFs
120
Zipf's law
100
> ) Zipf <> CCDF
= 80 >
> SURPRISE| References
Z 60
m
40
20
0
200 400 600 800 1000
DAYS

A turkey before and after Thanksgiving. The history of a process over a thousand
days tells you nothing about what Is to happen next. This naive projection of the fu-
ture from the past can be applied to anything.

From “The Black Swan” l'¢!
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Winners get a small segment/Winner take almost all
effects

When you observe for a while, you know what's going
on/It takes a very long time to figure out what's going
on

Prediction is easy/Prediction is hard
History crawls/History makes jumps

Tyranny of the collective/Tyranny of the rare and
accidental

The PoCSverse
Power-Law Size
Distributions
350f67

Our Intuition
Definition
Examples
Wild vs. Mild
Zipf's law
Zipf < CCDF

References




The PoCSverse

Size dIStribUtiOnS: Power-Law Size

Distributions
36 of 67

Our Intuition

Definition
Power-law size distributions are Examples
sometimes called wild vs. Mild
Pareto distributions (' after Italian CCpEs
scholar Vilfredo Pareto.' P <y
777777777777 Zipf < CCDF

References



http://en.wikipedia.org/wiki/Pareto_distribution
http://en.wikipedia.org/wiki/Vilfredo_Pareto
http://en.wikipedia.org/wiki/The_dismal_science
http://en.wikipedia.org/wiki/The_dismal_science

Size distributions:

Power-law size distributions are
sometimes called
Pareto distributions £ after Italian

Pareto noted wealth in Italy was
distributed unevenly (80-20 rule;
misleading).
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Size distributions:

Power-law size distributions are
sometimes called
Pareto distributions £ after Italian

Pareto noted wealth in Italy was
distributed unevenly (80-20 rule;
misleading).

Term used especially by
practitioners of the Dismal
Science .
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Exhibit A: Definition
: Examples

& Given P(z) = cz Y With 0 < 2, < Z < Zpaxs Wild vs. Mild

the mean is (y # 2): CCDFs

C 5= ==
<w> e 2 T 7 (‘rl’ll'ﬂa;(y = wm]n’y

Zipf's law
) Zipf < CCDF

References

Insert question from assignment 2 (£


https://pdodds.w3.uvm.edu//teaching/courses/2021-2022principles-of-complex-systems//assignments/02/

Devilish power-law size distribution details:

Exhibit A:
GEIVERE (z) —cn F With U< = s it
the mean is (y # 2):
C

(@) = 7= (zmat —Tmn')

Mean ‘blows up’ with upper cutoff if vy < 2.

Insert question from assignment 2 (£
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Devilish power-law size distribution details:
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GEIVERE (z) —cn F With U< = s it
the mean is (y # 2):

() = — ~ (vmat = o)

Mean ‘blows up’ with upper cutoff if v < 2.
Mean depends on lower cutoff if v > 2.

Insert question from assignment 2 (£
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Definition

Examples

GEIVERE (z) —cn F With U< = s it Wild vs. Mild

the mean is (y # 2): CCDFs

t C 2~ 2~ Zipf's law
(x) = ~ Tmax — Lin ) - Zipf < CCDF

References

Mean ‘blows up’ with upper cutoff if v < 2.
Mean depends on lower cutoff if v > 2.
v < 2: Typical sample is large.

Insert question from assignment 2 (£
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Our Intuition

Definition
Examples
GEIVERE (z) —cn F With U< = s it Wild vs. Mild
the mean is (y # 2): CCDFs
t C 2~ 2~ Zipf's law
(z) = 2_~ (xmax — Zin ) . Zipf < CCOF

References

Mean ‘blows up’ with upper cutoff if v < 2.
Mean depends on lower cutoff if v > 2.

v < 2: Typical sample is large.

v > 2: Typical sample is small.

Insert question from assignment 2 (£


https://pdodds.w3.uvm.edu//teaching/courses/2021-2022principles-of-complex-systems//assignments/02/
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<= All moments depend only on cutoffs. Examples
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Zipf's law
Zipf < CCDF

References

Insert question from assignment 3 (£
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And in general ...

Moments:
<= All moments depend only on cutoffs.

& No internal scale that dominates/matters.

Insert question from assignment 3 (£

The PoCSverse
Power-Law Size
Distributions
38 0f 67

Our Intuition
Definition
Examples
Wild vs. Mild
Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu//teaching/courses/2021-2022principles-of-complex-systems//assignments/03/
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All moments depend only on cutoffs.
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Our Intuition

Moments: i
Definition
<= All moments depend only on cutoffs. Examples
< No internal scale that dominates/matters. AR
§ : CCDFs
<= Compare to a Gaussian, exponential, etc. g
Zipf < CCDF
For many real size distributions: 2 < v < 3 e

Insert question from assignment 3 (£
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Our Intuition

Definition
All moments depend only on cutoffs. Examples
No internal scale that dominates/matters. il v2 M

CCDFs
Compare to a Gaussian, exponential, etc. G

Zipf < CCDF

References

mean is finite (depends on lower cutoff)

o2 = variance is ‘infinite’ (depends on upper cutoff)
Width of distribution is ‘infinite’

If v > 3, distribution is less terrifying and may be
easily confused with other kinds of distributions.

Insert question from assignment 3 (£
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Moments

Variance is nice analytically ...
Another measure of distribution width:

Mean average deviation (MAD) = (|z — (z)|)
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Moments

Variance is nice analytically ...
Another measure of distribution width:

Mean average deviation (MAD) = (|z — (z)|)
For a pure power law with 2 < v < 3:
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Variance is nice analytically ...
Another measure of distribution width:

Mean average deviation (MAD) = (|z — (z)|)
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Moments

Variance is nice analytically ...
Another measure of distribution width:

Mean average deviation (MAD) = (|z — (z)|)
For a pure power law with 2 < v < 3:
|z — (z)|) is finite.

But MAD is mildly unpleasant analytically ...
We still speak of infinite ‘width’ if v < 3.
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How sample sizes grow ...
Given P(z) ~ cx7:

<= We can show that after n samples, we expect the
largest sample to be'

‘,'Ul 2 Clnl/(’y_l)

Insert question from assignment 4 (£

'Later, we see that the largest sample grows as n” where p is
the Zipf exponent
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Sampling from a finite-variance distribution gives
a much slower growth with n.
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How sample sizes grow ...

We can show that after n samples, we expect the
largest sample to be'

‘,'Ul Z C/n1/<’y*1>

Sampling from a finite-variance distribution gives
a much slower growth with n.

e.g., for P(z) = e ?*, we find

z, = <Inn.

> =

Insert question from assignment 4 (£

'Later, we see that the largest sample grows as n” where p is
the Zipf exponent
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Scaling of expected largest value as a function of
sample size N:

18
oF 7 =5/2 y=3/2
slope =1/(y—1) =2/3 16 slope = 1/(y —1) =2
14
4 /512
%i 8
2 B=lo
1 4
5 2
0
1 2 3 4 5 6 1 2 3 T 6
logyo N logy NV

Bit for 4= 5/ 22k -~ N0 800066 (g blinear)
Fit for v = 3/2: kyax ~ N2:063£0.215 (syperlinear)

295% confidence interval
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oo ol
Use when tail of P follows a power law.
Increases exponent by one.
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Zipfian rank-frequency plots

Noted various rank distributions
have power-law tails, often with exponent -1
(word frequency, city sizes, ...)
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Zipfian rank-frequency plots

George Kingsley Zipf:

Noted various rank distributions
have power-law tails, often with exponent -1
(word frequency, city sizes, ...)

Zipf's 1949 Magnum Opus (£
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Zipfian rank-frequency plots

Noted various rank distributions
have power-law tails, often with exponent -1
(word frequency, city sizes, ...)

Zipf's 1949 Magnum Opus (£

We'll study Zipf's law in depth ...
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Zipfian rank-frequency plots

Given a collection of entities, rank them by size,
largest to smallest.

x,. = the size of the rth ranked entity.
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Zipfian rank-frequency plots

Given a collection of entities, rank them by size,
largest to smallest.

x,. = the size of the rth ranked entity.
r = 1 corresponds to the largest size.
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Zipfian rank-frequency plots

Given a collection of entities, rank them by size,
largest to smallest.

x,. = the size of the rth ranked entity.
r = 1 corresponds to the largest size.

Example: z; could be the frequency of occurrence
of the most common word in a text.
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Zipfian rank-frequency plots

Given a collection of entities, rank them by size,
largest to smallest.

x,. = the size of the rth ranked entity.
r = 1 corresponds to the largest size.

Example: z; could be the frequency of occurrence
of the most common word in a text.

Zipf's observation:

O
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NP. (x) = the number of objects with size at least x
where NN = total number of objects.

If an object has size z,.,, then NP, (x,.) is its rank r.
So

Tt TS = (NP ()7

{1
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NP. (x) = the number of objects with size at least x
where NN = total number of objects.

If an object has size z,.,, then NP, (x,.) is its rank r.
So

Tt TS = (NP ()7

{1

x z- " DEY) since PLfe) e gLl
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NP. (x) = the number of objects with size at least x
where NN = total number of objects.

If an object has size z,.,, then NP, (x,.) is its rank r.
So

Tt TS = (NP ()7

{1

x z- " DEY) since PLfe) e gLl

We therefore have 1 = —(y — 1)(—«) or:
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NP. (x) = the number of objects with size at least x
where NN = total number of objects.

If an object has size z,.,, then NP, (x,.) is its rank r.
So

Tt TS = (NP ()7

{1

x z- " DEY) since PLfe) e gLl

We therefore have 1 = —(y — 1)(—«) or:

A rank distribution exponent of a = 1 corresponds to a

size distribution exponent v = 2.
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“Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

<& Examined all games of varying game depth d in a set of
chess databases.
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=== | “Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.
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— “Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.

S(n;d) = number of depth d games with popularity n.
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— “Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.

S(n;d) = number of depth d games with popularity n.

Show “the frequencies of opening moves are
distributed according to a power law with an exponent
that increases linearly with the game depth, whereas
the pooled distribution of all opening weights follows
Zipf's law with universal exponent.”
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“Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.

S(n;d) = number of depth d games with popularity n.

Show “the frequencies of opening moves are
distributed according to a power law with an exponent
that increases linearly with the game depth, whereas
the pooled distribution of all opening weights follows
Zipf's law with universal exponent.”

Propose hierarchical fragmentation model that
produces self-similar game trees.
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FIG. 1 (color online). (a) Schematic representation of the
weighted game tree of chess based on the SCIDBASE [6] for the
first three half moves. Each node indicates a state of the game.
Possible game continuations are shown as solid lines together
with the branching ratios r,. Dotted lines symbolize other game
continuations, which are not shown. (b) Alternative representa-
tion hasizing the successi ion of the set of
games, here indicated for games following a 1.d4 opening until
the fourth half move d = 4. Each node o is represented by a box
of a size i to its fi 7, In the sut half
move these games split into subsets (indicated vertically below)
according to the possible game continuations. Highlighted in (a)
and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian
defense).
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FIG. 2 (color online). (a) Histogram of weight frequencies
S(n) of openings up to d =40 in the Scid database and with
logarithmic binning. A straight line fit (not shown) yields an
exponent of a = 2.05 with a goodness of fit R > 0.9992. For
comparison, the Zipf distribution Eq. (8) with p = 1 is indicated
as a solid line. Inset: number C(n) = ¥_ ., S(m) of openings
with a popularity m > n. C(n) follows a power law with ex-
ponent a@ = 1.04 (R> = 0.994). (b) Number S,(n) of openings of
depth d with a given popularity n for d = 16 and histograms
with logarithmic binning for d = 4, d = 16, and d = 22. Solid
lines are ion lines to the logarithmically binned data
(R*>0.99 for d < 35). Inset: slope a, of the regression line
as a function of d and the analytical estimation Eq. (6) using
N = 1.4 % 10° and B = 0 (solid line).
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<% Later in the course: Understanding success—
is the Mona Lisa like Don Bradman?
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