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These slides are brought to you by:
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These slides are also brought to you by:

Special Guest Executive Producer

 On Instagram at pratchett_the_cat

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://www.instagram.com/pratchett_the_cat/
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 An awful recording: Wikipedia’s list of
epidemics from 430 BC on.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://en.wikipedia.org/wiki/List_of_epidemics
https://en.wikipedia.org/wiki/List_of_epidemics
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Contagion

A confusion of contagions:
 Did Harry Potter spread like a virus?
 Can disinformation be “infectious”?
 Suicide, violence?
 Morality? Evil? Laziness? Stupidity? Happiness?
 Religion?
 Democracy …?
 Language? The alphabet? [10]

 Stories?

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Contagion

Naturomorphisms
 “The feeling was contagious.”
 “The news spread like wildfire.”
 “Freedom is the most contagious virus known to

man.”
—Hubert H. Humphrey, Johnson’s vice president

 “Nothing is so contagious as enthusiasm.”
—Samuel Taylor Coleridge

Optimism according to Ambrose Bierce:
The doctrine that everything is beautiful, including
what is ugly, everything good, especially the bad, and
everything right that is wrong. ... It is hereditary, but
fortunately not contagious.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://en.wikipedia.org/wiki/Ambrose_Bierce
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Social contagion

Eric Hoffer, 1902–1983
There is a grandeur in the uniformity of the mass.
When a fashion, a dance, a song, a slogan or a joke
sweeps like wildfire from one end of the continent to
the other, and a hundred million people roar with
laughter, sway their bodies in unison, hum one song
or break forth in anger and denunciation, there is the
overpowering feeling that in this country we have
come nearer the brotherhood of man than ever
before.

 Hoffer was an interesting fellow...

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://en.wikipedia.org/wiki/Eric_Hoffer
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The spread of fanaticism

Hoffer’s most famous work: “The True Believer:
Thoughts On The Nature Of Mass Movements”
(1951) [12]

Aphorisms-aplenty:
 “We can be absolutely certain only about things

we do not understand.”
 “Mass movements can rise and spread without

belief in a God, but never without belief in a devil.”
 “Where freedom is real, equality is the passion of

the masses. Where equality is real, freedom is the
passion of a small minority.”

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Imitation

despair.com

“When people are
free to do as they
please, they usually
imitate each other.”

—Eric Hoffer
“The Passionate State
of Mind” [13]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
despair.com
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The collective...

despair.com

“Never
Underestimate the
Power of Stupid
People in Large
Groups.”

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
despair.com
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Examples of non-disease spreading:

Interesting infections:
 Spreading of certain buildings in the US:

http://www.youtube.com/watch?v=EGzHBtoVvpc?rel=0

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Marbleization of the US:

http://www.youtube.com/watch?v=9ihSeSToXOw?rel=0

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


http://www.youtube.com/watch?v=9ihSeSToXOw?rel=0
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The most terrifying contagious outbreak?

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Contagion

Definitions
 (1) The spreading of a quality or quantity between

individuals in a population.
 (2) A disease itself:

the plague, a blight, the dreaded lurgi, ...
 from Latin: con = ‘with’ + tangere ‘to touch.’
 Contagion has unpleasant overtones...
 Just Spreading might be a more neutral word
 But contagion is kind of exciting...

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Contagions

Two main classes of contagion
1. Infectious diseases:

tuberculosis, HIV, ebola, SARS, influenza,
zombification, ...

2. Social contagion:
fashion, word usage, rumors, uprisings, religion,
stories about zombies, ...

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Community—S2E6: Epidemiology

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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Mathematical Epidemiology

The standard SIR model [18]

 = basic model of disease contagion
 Three states:

1. S = Susceptible
2. I = Infective/Infectious
3. R = Recovered or Removed or Refractory

 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1
 Presumes random interactions (mass-action

principle)
 Interactions are independent (no memory)
 Discrete and continuous time versions

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Mathematical Epidemiology

Discrete time automata example:

I

R

S
βI

1 − ρ

ρ

1 − βI

r
1 − r

Transition Probabilities:

𝛽 for being infected given
contact with infected
𝑟 for recovery
𝜌 for loss of immunity

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Mathematical Epidemiology

Original models attributed to
 1920’s: Reed and Frost
 1920’s/1930’s: Kermack and McKendrick [14, 16, 15]

 Coupled differential equations with a mass-action
principle

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction models

Differential equations for continuous model
d
d𝑡 𝑆 = −𝛽𝐼𝑆 + 𝜌𝑅

d
d𝑡 𝐼 = 𝛽𝐼𝑆 − 𝑟𝐼

d
d𝑡 𝑅 = 𝑟𝐼 − 𝜌𝑅

𝛽, 𝑟, and 𝜌 are now rates.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Reproduction Number 𝑅0

Reproduction Number 𝑅0

 𝑅0 = expected number of infected individuals
resulting from a single initial infective

 Epidemic threshold: If 𝑅0 > 1, ‘epidemic’ occurs.
 Exponential take off: 𝑅𝑛

0 where 𝑛 is the number of
generations.

 Fantastically awful notation convention: 𝑅0 and
the 𝑅 in 𝑆𝐼𝑅.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://en.wikipedia.org/wiki/Basic_reproduction_number
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Reproduction Number 𝑅0

Discrete version:
 Set up: One Infective in a randomly mixing

population of Susceptibles
 At time 𝑡 = 0, single infective random bumps into a

Susceptible
 Probability of transmission = 𝛽
 At time 𝑡 = 1, single Infective remains infected with

probability 1 − 𝑟
 At time 𝑡 = 𝑘, single Infective remains infected

with probability (1 − 𝑟)𝑘

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Reproduction Number 𝑅0
Discrete version:
 Expected number infected by original infective:

𝑅0 = 𝛽 + (1 − 𝑟)𝛽 + (1 − 𝑟)2𝛽 + (1 − 𝑟)3𝛽 + …

= 𝛽 (1 + (1 − 𝑟) + (1 − 𝑟)2 + (1 − 𝑟)3 + …)

= 𝛽 1
1 − (1 − 𝑟) = 𝛽/𝑟

For 𝑆(0) ≃ 1 initial susceptibles
(1 − 𝑆(0) = 𝑅(0) = fraction initially immune):

𝑅0 = 𝑆(0)𝛽/𝑟

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction models

Example of epidemic threshold:

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

R
0

Fr
ac

tio
n 

in
fe

ct
ed

 Continuous phase transition.
 Fine idea from a simple model.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction models

For the continuous version
 Second equation:

d
d𝑡𝐼 = 𝛽𝑆𝐼 − 𝑟𝐼

d
d𝑡𝐼 = (𝛽𝑆 − 𝑟)𝐼

 Number of infectives grows initially if

𝛽𝑆(0) − 𝑟 > 0 ⇒ 𝛽𝑆(0) > 𝑟 ⇒ 𝛽𝑆(0)/𝑟 > 1

where 𝑆(0) ≃ 1.
 Same story as for discrete model.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Independent Interaction models

Many variants of the SIR model:
 SIS: susceptible-infective-susceptible
 SIRS: susceptible-infective-recovered-susceptible
 compartment models (age or gender partitions)
 more categories such as ‘exposed’ (SEIRS)
 recruitment (migration, birth)

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Watch someone else pretend to save the
world:

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Save the world yourself:

 And you can be the virus.
 Also contagious?: Cooperative games ...

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://www.amazon.com/Z-Man-Games-ZMG-71100-Pandemic/dp/B00A2HD40E/
http://pandemic3.com/
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Neural reboot—Save another pretend world with
Vax:

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://vax.herokuapp.com


PoCS
@pocsvox

Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation
models

Model output

Nutshell

Other kinds of prediction

Next

References

.
.
.
.
.

.
39 of 97

Pandemic severity index (PSI)
 Classification during/post pandemic:

 Category based.
 1–5 scale.
 Modeled on the

Saffir-Simpson hurricane
scale.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://en.wikipedia.org/wiki/Pandemic_severity_index
https://en.wikipedia.org/wiki/Saffir–Simpson_hurricane_wind_scale
https://en.wikipedia.org/wiki/Saffir–Simpson_hurricane_wind_scale
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For novel diseases:
1. Can we predict the size of an epidemic?
2. How important is the reproduction number 𝑅0?

𝑅0 approximately same for all of the following:
 1918-19 “Spanish Flu” ∼ 75,000,000 world-wide,

500,000 deaths in US.
 1957-58 “Asian Flu” ∼ 2,000,000 world-wide,

70,000 deaths in US.
 1968-69 “Hong Kong Flu” ∼ 1,000,000 world-wide,

34,000 deaths in US.
 2003 “SARS Epidemic” ∼ 800 deaths world-wide.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Size distributions

As we know, heavy-tailed size distributions are
somewhat prevalent in complex systems:
 earthquakes (Gutenberg-Richter law)
 city sizes, forest fires, war fatalities
 wealth distributions
 ‘popularity’ (books, music, websites, ideas)
 Epidemics?

Power law distributions are common but not
obligatory...

Really, what about epidemics?
 Simply hasn’t attracted much attention.
 Data not as clean as for other phenomena.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Feeling Ill in Iceland

Caseload recorded monthly for range of diseases in
Iceland, 1888-1990

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
0
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Iceland: measles
normalized count

 Treat outbreaks separated in time as ‘novel’
diseases.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://en.wikipedia.org/wiki/Iceland
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Really not so good at all in Iceland

Epidemic size distributions 𝑁(𝑆) for
Measles, Rubella, and Whooping Cough.
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Spike near 𝑆 = 0, relatively flat otherwise.
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Measles & Pertussis
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Insert plots:
Complementary cumulative frequency distributions:

N(Ψ′ > Ψ) ∝ Ψ−𝛾+1

Limited scaling with a possible break.

https://pdodds.w3.uvm.edu
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Power law distributions

Measured values of 𝛾:
 measles: 1.40 (low Ψ) and 1.13 (high Ψ)
 pertussis: 1.39 (low Ψ) and 1.16 (high Ψ)

 Expect 2 ≤ 𝛾 < 3 (finite mean, infinite variance)
 When 𝛾 < 1, can’t normalize
 Distribution is quite flat.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Resurgence—example of SARS

D

Date of onset

# 
N

ew
 c

as
es

Nov 16, ’02 Dec 16, ’02 Jan 15, ’03 Feb 14, ’03 Mar 16, ’03 Apr 15, ’03 May 15, ’03 Jun 14, ’03

160

120

80

40

0

 Epidemic slows...
then an infective moves to a new context.

 Epidemic discovers new ‘pools’ of susceptibles:
Resurgence.

 Importance of rare, stochastic events.

https://pdodds.w3.uvm.edu
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Community—S2E6: Epidemiology

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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The challenge

So... can a simple model produce
1. broad epidemic distributions

and
2. resurgence ?

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Size distributions
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Simple models
typically produce
bimodal or unimodal
size distributions.

 This includes network models:
random, small-world, scale-free, ...

 Exceptions:
1. Forest fire models
2. Sophisticated metapopulation models

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Burning through the population

Forest fire models: [19]

 Rhodes & Anderson, 1996
 The physicist’s approach:

“if it works for magnets, it’ll work for people...”

A bit of a stretch:
1. Epidemics ≡ forest fires

spreading on 3-d and 5-d lattices.
2. Claim Iceland and Faroe Islands exhibit power law

distributions for outbreaks.
3. Original forest fire model not completely

understood.

http://xkcd.com/793/
https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
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Size distributions

From Rhodes and Anderson, 1996.

http://xkcd.com/793/
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Sophisticated metapopulation models:

 Multiscale models suggested earlier by others but
not formalized (Bailey [1], Cliff and Haggett [6],
Ferguson et al.)

 Community based mixing (two
scales)—Longini. [17]

 Eubank et al.’s EpiSims/TRANSIMS—city
simulations. [9]

 Spreading through countries—Airlines: Germann
et al., Colizza et al. [7]

 GLEAM:
Global
pandemic
simulations by
Vespignani et
al.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
http://en.wikipedia.org/wiki/Transims
http://www.gleamviz.org
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simulation shown in Fig. 2B. Compared to Fig. 1C,
this demonstrates that effective distance generates
a much higher correlation than geographic dis-
tance (R2

eff ¼ 0:97 compared to R2
geo ¼ 0:34; see

tables S2 and S3 and fig. S12 for more examples).
Furthermore, the relationship of Ta and Deff is
linear, which means that the effective speed veff =
Deff /Ta of the wavefront is a well-defined con-
stant. To compare the regression quality, we com-
puted the distribution of relative residuals r =
dTa/Ta, using effective or geographic distance as a
regressor. The ratio of residual variances implies
a more than 50-fold higher prediction quality
(table S3 and fig. S13).

Although we have demonstrated the clear
linear functional relationship for simulated, hy-
pothetical scenarios of global disease spread, it
is crucial to test the validity and usefulness of
the effective distance approach on empirical data.
Figure 2, D and E, depict arrival time versus ef-
fective distance on the basis of data for the 2009
H1N1 pandemic and the global 2003 SARS epi-
demic, respectively (figs. S14 to S16 and table S4).
Arrival times are the same as in Fig. 1, D and E,
but shown across effective rather than geographic
distances. As the empirical data are available on a
country resolution, we determined the traffic be-
tween countries by aggregation to specify a coarse-
grained network (GMNc) (189 nodes, 5004 links)
and effective distances from the origin location
in each case (see supplementary text for details).

Both the H1N1 and SARS data exhibit a clear
linear relationship between arrival time and ef-
fective distance from the source, even though
additional factors complicate the spreading of
real diseases. Fluctuations, effects due to coarse
graining, and errors in arrival-time measurements
can add noise to the system, which increases the
scatter in the linear relationship. To address the
general validity of the observed effects, we also
analyzed data generated by the global epidemic
and mobility model (GLEAM) (www.gleamviz.
org), a sophisticated epidemic simulation frame-
work (21). GLEAM incorporates air transporta-
tion and local commuter traffic on a global scale,
is fully stochastic, and permits the simulation of
infectious state–dependent mobility behavior, clin-
ical states, antiviral statement, and more. The re-
sults of this analysis are shown in figs. S17 to
S19 and are consistent with our claims.

Relative Arrival Times Are Independent
of Epidemic Parameters
Our results reveal an important, approximate
relationship between the system parameters,
which can be summarized as follows:

Ta ¼ Deff ðPÞ
︸eff : distance

=veff ða,R0,g,eÞ
︸eff : speed

ð6Þ

This equation states that arrival times can be
computed with high fidelity based on the ef-

fective distances Deff and effective spreading
speed veff, and that each factor depends on dif-
ferent parameters of the dynamical system. The
epidemiological parameters determine the effec-
tive speed, whereas effective distance depends
only on the topological features of the static
underlying network, i.e., the matrix P. When
confronted with the outbreak of an emergent in-
fectious disease, one of the key problems is that
the disease-specific parameters are typically un-
known in the beginning, and simulations based
on plausible parameter ranges typically exhibit
substantial variability in predicted outcomes.
However, Eq. 6 allows us to compute relative
arrival times without knowledge of these pa-
rameters. If, for example, the outbreak node is
labeled k, while n and m are arbitrary nodes,
then Ta(n|k)/Ta(m|k) =Deff(n|k)/Deff(m|k). Equa-
tion 6 states that the effective speed veff is a
global property, independent of the mobility net-
work and the outbreak location. Thus, irrespec-
tive of mobility and OL, one can investigate
how the effective speed depends on rate param-
eters of the system.

Origin of Outbreak Reconstruction Based on
Effective Distance
The concept of effective distance is particularly
valuable for solving the aforementioned in-
verse problem: Given a spatially distributed
prevalence pattern that was generated by an

A
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JNB LHR MEX SYD ATL

PEKHNDORDSVO

Fig. 3. Qualitative outbreak reconstruction based on effective distance.
(A) Spatial distribution of prevalence jn(t) at time T = 81 days for OL Chicago
(parameters b = 0.28 day–1, R0 = 1.9, g = 2.8 × 10–3 day–1, and e = 10–6).
After this time, it is difficult, if not impossible, to determine the correct OL from
snapshots of the dynamics. (B) Candidate OLs chosen from different geographic
regions. (C) Panels depict the state of the system shown in (A) from the

perspective of each candidate OL, using each OL’s shortest path tree represen-
tation. Only the actual OL (ORD, circled in blue) produces a circular wavefront.
Even for comparable North American airports [Atlanta (ATL), Toronto (YYZ), and
Mexico City (MEX)], the wavefronts are not nearly as concentric. Effective
distances thus permit the extraction of the correct OL, based on information on
the mobility network and a single snapshot of the dynamics.

13 DECEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1340

RESEARCH ARTICLE

“The hidden geometry of complex,
network-driven contagion phenomena”
Brockmann and Helbing,
Science, 342, 1337–1342, 2013. [5]

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu//research/papers/others/everything/brockmann2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/brockmann2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/brockmann2013a.pdf
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Weighted links Fnm quantify direct air traffic
(passengers per day) from node m to node n.
The GMN is constructed from the worldwide air
traffic between 4069 airports with 25,453 direct
connections. Details on the data and network con-
struction are provided in the supplementary mate-
rials (e.g., fig. S1 and table S1) (5, 13, 20, 29). The
total network traffic is approximately F ¼ 8:91"
106 passengers per day. Assuming that the total
traffic in and out of a node is proportional to its
population size, Eqs. 1 and 2 can be rewritten as

∂t jn ¼ asn jnsð jn=eÞ − b jn þ g ∑
m≠n

Pmnð jm − jnÞ

∂tsn ¼ −asn jnsð jn=eÞ þ g ∑
m≠n

Pmnðsm − snÞ

with sn = Sn/Nn, jn = In/Nn, and rn = 1 – sn – jn. A
detailed derivation is provided in the supplemen-
tary text. The mobility parameter g is the average
mobility rate, i.e.,g ¼ F=W, whereW ¼ ∑nNn is
the total population in the system. This yields nu-
merical values in the range g =0.0013–0.0178day–1.
The matrix P with 0 ≤ Pmn ≤ 1 quantifies the
fraction of the passenger flux with destinationm

emanating from node n, i.e., Pmn = Fmn/Fn,

where Fn ¼ ∑
m
Fmn. The additional sigmoid func-

tion sðxÞ ¼ xh=ð1þ xhÞwithgainparameterh >>0
accounts for the local invasion threshold e and
fluctuation effects for jn < e (30–32). Typical
parameter choices for e and h areh ¼ 4,8,∞ and
−log10 e ¼ 4,…,6. Our results are robust with re-
spect to changes in these parameters (e.g., figs. S5
and S13).

Figure 1B shows a temporal snapshot of the
dynamical system defined by Eq. 3 for a hy-
pothetical pandemic with initial outbreak loca-
tion (OL) in HongKong (HKG) (see also Fig. 2B
and fig. S2 for temporal sequences of the dy-
namical system for various other OLs). General-
ly, the metapopulation model above and related
models used in the past generate solutions that
are characterized by similar qualitative features.
First, only during the early stage of the process
does the prevalence jn(t) (i.e., the fraction of
infected individuals) correlate significantly with
geographic distance from the OL. Second, at in-

termediate and later stages, themultiscale structure
of the GMN induces a spatial decoherence of
the spreading pattern. Third, despite the global
connectivity, the spatiotemporal patterns do not
converge to the same pattern, i.e., spatiotemporal
differences are not a transient effect (figs. S3 to
S6 andmovies S1 to S3). This type of complexity
sharply contrasts the generic behavior of ordinary
reaction-diffusion systems, which typically ex-
hibit spatially coherent wavefronts.

Most Probable Paths and Effective Distance
The key idea we pursue here is that, despite the
structural complexity of the underlying network,
the redundancy of connections, and the multiplic-
ity of paths a contagion phenomenon can take, the
dynamic process is dominated by a set of most
probable trajectories that can be derived from the
connectivity matrix P. This hypothesis is analogous
to the dominance of the smallest resistor in a strong-
ly heterogeneous electrical network with parallel
conducting lines.Given the flux-fraction0≤Pmn≤1,
i.e., the fraction of travelers that leave node n and
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Fig. 1. Complexity in global, network-driven contagion phenomena. (A)
The global mobility network (GMN). Gray lines represent passenger flows along
direct connections between 4069 airports worldwide. Geographic regions are
distinguished by color [classified according to network modularity maximization
(39)]. (B) Temporal snapshot of a simulated global pandemic with initial outbreak
location (OL) in Hong Kong (HKG). The simulation is based on themetapopulation
model defined by Eq. 3 with parameters R0 = 1.5, b = 0.285 day–1, g = 2.8 ×
10–3 day–1, e = 10–6. Red symbols depict locations with epidemic arrival times
in the time window 105 days≤ Ta≤ 110 days. Because of themultiscale structure
of the underlying network, the spatial distribution of disease prevalence (i.e.,
the fraction of infected individuals) lacks geometric coherence. No clear wave-
front is visible, and based on this dynamic state, the OL cannot be easily deduced.
(C) For the same simulation as in (B), the panel depicts arrival times Ta as a
function of geographic distance Dg from the OL [nodes are colored according to
geographic region as in (A)] for each of the 4069 nodes in the network. On a

global scale, Ta weakly correlates with geographic distance Dg (R2 = 0.34). A
linear fit yields an average global spreading speed of vg = 331 km/day (see also
fig. S7). Using Dg and vg to estimate arrival times for specific locations, however,
does not work well owing to the strong variability of the arrival times for a given
geographic distance. The red horizontal bar corresponds to the arrival time
window shown in (B). (D) Arrival times versus geographic distance from the
source (Mexico) for the 2009 H1N1 pandemic. Symbols represent 140 affected
countries, and symbol size quantifies total traffic per country. Arrival times are
defined as the date of the first confirmed case in a given country after the initial
outbreak on 17 March 2009. As in the simulated scenario, arrival time and
geographic distance are only weakly correlated (R2 = 0.0394). (E) In analogy to
(D), the panel depicts the arrival times versus geographic distance from the
source (China) of the 2003 SARS epidemic for 29 affected countries worldwide.
Arrival times are taken from WHO published data (2). As in (C) and (D), arrival
time correlates weakly with geographic distance.

(3)

13 DECEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1338
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arrive at node m, we define the effective distance
dnm from a node n to a connected node m as

dmn ¼ ð1 − logPmnÞ ≥ 1 ð4Þ

This concept of effective distance reflects the
idea that a small fraction of traffic n→m is effec-
tively equivalent to a large distance, and vice versa.
As explained in more detail in the supplemen-
tary text, the logarithm is a consequence of the
requirement that effective lengths are additive,
whereas probabilities along multistep paths are
multiplicative. Eq. 4 defines a quasi-distance,which
is generally asymmetric, i.e., dmn ≠ dnm. The lack
of symmetry is analogous to a road network of one-
way streets, where the shortest distance fromA toB
may differ from the one from B to A. This asym-
metry captures the effect that a randomly seeded
disease in a peripheral node of the network has a
higher probability of being transmitted to a well-
connected hub than vice versa (figs. S8 to S10).
More properties of effective distance as defined
by Eq. 4 are discussed in the supplementary text.
On the basis of effective distance, we can define
the directed length lðGÞ of an ordered path

G ¼ fn1,…,nLg as the sum of effective lengths
along the legs of the path. Moreover, we define
the effective distance Dmn from an arbitrary ref-
erence node n to another node m in the network
by the length of the shortest path from n to m:

Dmn ¼ min
G

lðGÞ ð5Þ

Again, we typically haveDmn ≠ Dnm. From
the perspective of a chosen origin node n, the set
of shortest paths to all other nodes constitutes a
shortest path treeYn (Fig. 2A), illustrating themost
probable sequence of paths from the root node n
to the other nodes.

Effective Distance Perspective Reveals
Hidden Pattern Geometry
The key question is how, compared to the con-
ventional geographic representation, the same
spreading process evolves on the shortest path
tree. Figure 2B portrays this comparison. We see
that the effective distance representation has no-
table advantages: It reveals simple coherent wave
fronts, whereas spatiotemporal patterns in geo-
graphical space are complex, incoherent, and hard

to understand. This is a generic feature that is
robust against variations in epidemic parameters
and true for any choice of the OL (figs. S11 and
S12). Using effective distance, one can thus cal-
culate the spreading speed and arrival times of a
disease, and determine functional relationships
between epidemiological and mobility parameters.
The dynamic simplicity in the new representation
is much more than just a trivial visual rearrange-
ment of the spatiotemporal pattern. Simple prop-
agating waves in the new perspective imply that
the contagion process is dominated by most prob-
able paths, as this is the underlying assumption in
the derivation of Eq. 5. Also, effective distance
and the shortest path trees only depend on the
static mobility matrix P. This implies that, on a
spatial scale described by the metapopulation
model (Eq. 3), the complexity of the spatiotemporal
pattern is largely determined by the structure of
the mobility component in Eq. 3 and not by the
nonlinearities or the disease-specific, epidemio-
logical rate parameters of the model.

Figure 2C presents the correlation of arrival
times Ta with effective distances Deff for the
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Fig. 2. Understanding global contagion phenomena using effective
distance. (A) The structure of the shortest path tree (in gray) from Hong Kong
(central node). Radial distance represents effective distance Deff as defined by
Eqs. 4 and 5. Nodes are colored according to the same scheme as in Fig. 1A. (B)
The sequence (from left to right) of panels depicts the time course of a simulated
model disease with initial outbreak in Hong Kong (HKG), for the same param-
eter set as used in Fig. 1B. Prevalence is reflected by the redness of the symbols.
Each panel compares the state of the system in the conventional geographic
representation (bottom) with the effective distance representation (top). The
complex spatial pattern in the conventional view is equivalent to a homoge-

neous wave that propagates outwards at constant effective speed in the effective
distance representation. (C) Epidemic arrival time Ta versus effective distance
Deff for the same simulated epidemic as in (B). In contrast to geographic distance
(Fig. 1C), effective distance correlates strongly with arrival time (R2 = 0.973), i.e.,
effective distance is an excellent predictor of arrival times. (D and E) Linear
relationship between effective distance and arrival time for the 2009 H1N1
pandemic (D) and the 2003 SARS epidemic (E). The arrival time data are the
same as in Fig. 1, D and E. The effective distance was computed from the proj-
ected global mobility network between countries. As in the model system, we
observe a strong correlation between arrival time and effective distance.
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simulation shown in Fig. 2B. Compared to Fig. 1C,
this demonstrates that effective distance generates
a much higher correlation than geographic dis-
tance (R2

eff ¼ 0:97 compared to R2
geo ¼ 0:34; see

tables S2 and S3 and fig. S12 for more examples).
Furthermore, the relationship of Ta and Deff is
linear, which means that the effective speed veff =
Deff /Ta of the wavefront is a well-defined con-
stant. To compare the regression quality, we com-
puted the distribution of relative residuals r =
dTa/Ta, using effective or geographic distance as a
regressor. The ratio of residual variances implies
a more than 50-fold higher prediction quality
(table S3 and fig. S13).

Although we have demonstrated the clear
linear functional relationship for simulated, hy-
pothetical scenarios of global disease spread, it
is crucial to test the validity and usefulness of
the effective distance approach on empirical data.
Figure 2, D and E, depict arrival time versus ef-
fective distance on the basis of data for the 2009
H1N1 pandemic and the global 2003 SARS epi-
demic, respectively (figs. S14 to S16 and table S4).
Arrival times are the same as in Fig. 1, D and E,
but shown across effective rather than geographic
distances. As the empirical data are available on a
country resolution, we determined the traffic be-
tween countries by aggregation to specify a coarse-
grained network (GMNc) (189 nodes, 5004 links)
and effective distances from the origin location
in each case (see supplementary text for details).

Both the H1N1 and SARS data exhibit a clear
linear relationship between arrival time and ef-
fective distance from the source, even though
additional factors complicate the spreading of
real diseases. Fluctuations, effects due to coarse
graining, and errors in arrival-time measurements
can add noise to the system, which increases the
scatter in the linear relationship. To address the
general validity of the observed effects, we also
analyzed data generated by the global epidemic
and mobility model (GLEAM) (www.gleamviz.
org), a sophisticated epidemic simulation frame-
work (21). GLEAM incorporates air transporta-
tion and local commuter traffic on a global scale,
is fully stochastic, and permits the simulation of
infectious state–dependent mobility behavior, clin-
ical states, antiviral statement, and more. The re-
sults of this analysis are shown in figs. S17 to
S19 and are consistent with our claims.

Relative Arrival Times Are Independent
of Epidemic Parameters
Our results reveal an important, approximate
relationship between the system parameters,
which can be summarized as follows:

Ta ¼ Deff ðPÞ
︸eff : distance

=veff ða,R0,g,eÞ
︸eff : speed

ð6Þ

This equation states that arrival times can be
computed with high fidelity based on the ef-

fective distances Deff and effective spreading
speed veff, and that each factor depends on dif-
ferent parameters of the dynamical system. The
epidemiological parameters determine the effec-
tive speed, whereas effective distance depends
only on the topological features of the static
underlying network, i.e., the matrix P. When
confronted with the outbreak of an emergent in-
fectious disease, one of the key problems is that
the disease-specific parameters are typically un-
known in the beginning, and simulations based
on plausible parameter ranges typically exhibit
substantial variability in predicted outcomes.
However, Eq. 6 allows us to compute relative
arrival times without knowledge of these pa-
rameters. If, for example, the outbreak node is
labeled k, while n and m are arbitrary nodes,
then Ta(n|k)/Ta(m|k) =Deff(n|k)/Deff(m|k). Equa-
tion 6 states that the effective speed veff is a
global property, independent of the mobility net-
work and the outbreak location. Thus, irrespec-
tive of mobility and OL, one can investigate
how the effective speed depends on rate param-
eters of the system.

Origin of Outbreak Reconstruction Based on
Effective Distance
The concept of effective distance is particularly
valuable for solving the aforementioned in-
verse problem: Given a spatially distributed
prevalence pattern that was generated by an

A
LHR

PEK

SYD

ATL

SVO

DXB
MEX

YYZ

JNB

HND
BWE

ORD

B

C

DXB

YYZ

BWE

JNB LHR MEX SYD ATL

PEKHNDORDSVO

Fig. 3. Qualitative outbreak reconstruction based on effective distance.
(A) Spatial distribution of prevalence jn(t) at time T = 81 days for OL Chicago
(parameters b = 0.28 day–1, R0 = 1.9, g = 2.8 × 10–3 day–1, and e = 10–6).
After this time, it is difficult, if not impossible, to determine the correct OL from
snapshots of the dynamics. (B) Candidate OLs chosen from different geographic
regions. (C) Panels depict the state of the system shown in (A) from the

perspective of each candidate OL, using each OL’s shortest path tree represen-
tation. Only the actual OL (ORD, circled in blue) produces a circular wavefront.
Even for comparable North American airports [Atlanta (ATL), Toronto (YYZ), and
Mexico City (MEX)], the wavefronts are not nearly as concentric. Effective
distances thus permit the extraction of the correct OL, based on information on
the mobility network and a single snapshot of the dynamics.
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Community—S2E6: Epidemiology
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Size distributions

 Vital work but perhaps hard to generalize from...
 ⇒ Create a simple model involving multiscale

travel
 Very big question: What is 𝑁?
 Should we model SARS in Hong Kong as spreading

in a neighborhood, in Hong Kong, Asia, or the
world?

 For simple models, we need to know the final size
beforehand...

https://pdodds.w3.uvm.edu
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Improving simple models

Contexts and Identities—Bipartite networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

 boards of directors
 movies
 transportation modes (subway)
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Improving simple models

Idea for social networks: incorporate identity

Identity is formed from attributes such as:
 Geographic location
 Type of employment
 Age
 Recreational activities

Groups are crucial...
 formed by people with at least one similar

attribute
 Attributes ⇔ Contexts ⇔ Interactions ⇔

Networks. [23]
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Infer interactions/network from identities

eca

high school
teacher

occupation

health careeducation

nurse doctorteacher
kindergarten

db

Distance makes sense in identity/context space.
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Generalized context space

100

eca b d

geography occupation age

0

(Blau & Schwartz [3], Simmel [20], Breiger [4])
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A toy agent-based model:
Multiscale, resurgent epidemics in a hierarchical
metapopulation model
Duncan J. Watts*†‡§, Roby Muhamad*, Daniel C. Medina¶, and Peter S. Dodds†

*Department of Sociology, and †Institute for Social and Economic Research and Policy, Columbia University, New York, NY 10027; ‡Santa Fe Institute,
1399 Hyde Park Road, Santa Fe, NM 87501; and ¶College of Physicians and Surgeons, Columbia University, New York, NY 10032

Edited by David O. Siegmund, Stanford University, Stanford, CA, and approved June 14, 2005 (received for review February 12, 2005)

Although population structure has long been recognized as rele-
vant to the spread of infectious disease, traditional mathematical
models have understated the role of nonhomogenous mixing in
populations with geographical and social structure. Recently, a
wide variety of spatial and network models have been proposed
that incorporate various aspects of interaction structure among
individuals. However, these more complex models necessarily
suffer from limited tractability, rendering general conclusions
difficult to draw. In seeking a compromise between parsimony and
realism, we introduce a class of metapopulation models in which
we assume homogeneous mixing holds within local contexts, and
that these contexts are embedded in a nested hierarchy of succes-
sively larger domains. We model the movement of individuals
between contexts via simple transport parameters and allow
diseases to spread stochastically. Our model exhibits some impor-
tant stylized features of real epidemics, including extreme size
variation and temporal heterogeneity, that are difficult to charac-
terize with traditional measures. In particular, our results suggest
that when epidemics do occur the basic reproduction number R0

may bear little relation to their final size. Informed by our model’s
behavior, we suggest measures for characterizing epidemic thresh-
olds and discuss implications for the control of epidemics.

math model � population structure

The role and importance of interaction structure is a central
yet unresolved issue in mathematical epidemiology (1). At

the broadest level, the issue is straightforward: clearly not all
people interact equally with all others; hence diseases of humans
cannot spread in real populations precisely as they would if all
individuals were to mix uniformly at random. Moving beyond
this simple insight, however, poses considerable empirical and
theoretical obstacles: empirical, because the amount and variety
of structure present in real populations of different sizes defies
existing measurement technologies; and theoretical, because
without such knowledge it is difficult to model and thus assess
the impact of interaction structure on the spread of human-to-
human diseases. In this article, we focus on two key aspects of
large populations that we believe have not received adequate
attention in the existing literature: (i) that large populations
exhibit structure at many scales; and (ii) that the movement of
individuals between these scales is essential to the spread of a
large epidemic. These features can be represented formally with
a straightforward variation of a commonly studied class of
disease-spreading models, metapopulation models (e.g., ref. 2),
yet they nevertheless carry important implications for under-
standing and possibly controlling diseases, such as severe acute
respiratory syndrome (SARS) and influenza, that have the
potential to spread on many scales.

Metapopulation models can in general be characterized as a
theoretical compromise between the simplest and most analyt-
ically tractable disease-spreading models, often called compart-
ment models, and models in the recent network epidemiology
tradition that attempt to capture population structure in a
realistic way, but which necessarily exhibit far greater complex-
ity. Compartment models assume a continuous population that

is divided into a number of compartments (or states), typically
susceptible, infected, and recovered. Disease transmission oc-
curs because of contact between susceptible and infected indi-
viduals, and the mixing within and between compartments is
assumed to be random, where transition rules (for example, the
rate at which an infected person recovers) specify how individ-
uals move from one compartment to another (3).

Population structure can be introduced into these simple
models by specifying additional compartments, corresponding
not only to the different stages of within-host behavior, but also
to various differentiating features of the population, such as age
(4), susceptibility (5), risk behavior (6), and social status (2, 7),
along with a correspondingly complex set of mixing rates.
Individual-level f luctuations can also be included by specifying
fully stochastic versions of these models (8) without overly
compromising their mathematical tractability. Nevertheless,
compartment models rely heavily on the assumption that pop-
ulation structure can be represented solely in terms of individual
attributes (e.g., disease state, age, behavior), an assumption that
clearly cannot be satisfied in cases of diseases spreading over
spatially extended regions, where the physical distribution of the
population matters, or when disease transmission depends on
specific types of interactions (such as for sexually transmitted
diseases), whose structure may cut across physical locations and
social categories in unknown and complicated ways.

Spatial models (4, 9–11) address part of this problem by
modeling transmission as a function of geographical distance and
have been effective in capturing the dynamics of diseases in wild
(12) and domesticated (13) animals, as well as in suggesting
control strategies. However, spatial models are less relevant to
epidemics of modern human societies, in part because of the
importance of modern modes of transportation that shortcut
long geographical distances (14–16), and in part because many
diseases are transmitted by close-contact networks that charac-
terize families, organizational affiliations (e.g., school or work)
(7), or sexual relations (17). In recent years, therefore, models
that attempt to characterize the actual pattern of interactions
associated with a particular population and disease transmission
mechanism have become increasingly popular (17–21). How-
ever, although network models are appealing from a theoretical
perspective, the more elements of interaction structure that any
such model incorporates, the more free parameters and assump-
tions are required, and the harder it becomes to perform robust
and reliable analyses (1). Exacerbating this problem of model
complexity is the difficulty of determining parameters or justi-
fying assumptions empirically.

Metapopulation models (2) therefore offer a potentially use-
ful compromise between compartment models and networks.
Like compartment models, metapopulation models assume ran-
dom mixing within subpopulations (or patches) that are typically

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: SARS, severe acute respiratory syndrome.
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“Multiscale, resurgent epidemics in a
hierarchcial metapopulation model”
Watts et al.,
Proc. Natl. Acad. Sci., 102, 11157–11162,
2005. [24]

Geography: allow people to move between
contexts
 Locally: standard SIR model with random mixing
 discrete time simulation
 𝛽 = infection probability
 𝛾 = recovery probability
 𝑃 = probability of travel
 Movement distance: Pr(𝑑) ∝ exp(−𝑑/𝜉)
 𝜉 = typical travel distance

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu//research/papers/others/everything/watts2005a.pdf
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A toy agent-based model

Schematic:
b=2

i j

x ij =2l=3

n=8
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Model output

 Define 𝑃0 = Expected number of infected
individuals leaving initially infected context.

 Need 𝑃0 > 1 for disease to spread (independent of
𝑅0).

 Limit epidemic size by restricting frequency of
travel and/or range

https://pdodds.w3.uvm.edu
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Model output

Varying 𝜉:

 Transition in expected final size based on typical
movement distance (sensible)

https://pdodds.w3.uvm.edu
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Model output

Varying 𝑃0:

 Transition in expected final size based on typical
number of infectives leaving first group (also
sensible)

 Travel advisories: 𝜉 has larger effect than 𝑃0.

https://pdodds.w3.uvm.edu
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Example model output: size distributions
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 Flat distributions are possible for certain 𝜉 and 𝑃 .
 Different 𝑅0’s may produce similar distributions
 Same epidemic sizes may arise from different 𝑅0’s
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Model output—resurgence

Standard model:
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Model output—resurgence

Standard model with transport:

0 500 1000 1500
0

100

200

t

# 
N

ew
 c

as
es E R

0
=3

0 500 1000 1500
0

200

400

t

# 
N

ew
 c

as
es G R

0
=3

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation
models

Model output

Nutshell

Other kinds of prediction

Next

References

I

R

S
βI

1 − ρ

ρ

1 − βI

r
1 − r

.
.
.
.
.

.
74 of 97

The upshot

Simple multiscale population structure
+
stochasticity

leads to

resurgence
+
broad epidemic size distributions

https://pdodds.w3.uvm.edu
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Nutshelling

 For the hierarchical movement model, epidemic
size is highly unpredictable

 Model is more complicated than SIR but still
simple.

 We haven’t even included normal social responses
such as travel bans and self-quarantine.

 The reproduction number 𝑅0 is not terribly useful.
 𝑅0, however measured, is not informative about

1. how likely the observed epidemic size was,
2. and how likely future epidemics will be.

 Problem: 𝑅0 summarises one epidemic after the
fact and enfolds movement, the price of bananas,
everything.

https://pdodds.w3.uvm.edu
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Conclusions

 Disease’s spread is highly sensitive to population
structure.

 Rare events may matter enormously: e.g., an
infected individual taking an international flight.

 More support for controlling population
movement:
e.g., travel advisories, quarantine

https://pdodds.w3.uvm.edu
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Nutshelling

What to do:
 Need to separate movement from disease
 𝑅0 needs a friend or two.
 Need 𝑅0 > 1 and 𝑃0 > 1 and 𝜉 sufficiently large

for disease to have a chance of spreading
 And in general: keep building up the kitchen sink

models.

More wondering:
 Exactly how important are rare events in disease

spreading?
 Again, what is 𝑁?

https://pdodds.w3.uvm.edu
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Krugman, 1998: “Why most economists’
predictions are wrong.”

“The growth of the Internet will
slow drastically, as the flaw in
”Metcalfe’s law”—which states
that the number of potential
connections in a network is
proportional to the square of the
number of
participants—becomes apparent:
most people have nothing to say
to each other! By 2005 or so, it
will become clear that the
Internet’s impact on the economy
has been no greater than the fax
machine’s.”1

1http://www.redherring.com/mag/issue55/economics.html

https://pdodds.w3.uvm.edu
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Economics, Schmeconomics

Alan Greenspan (September 18, 2007):

“I’ve been dealing with these big
mathematical models of forecasting
the economy ...

If I could figure out a way to determine
whether or not people are more
fearful or changing to more euphoric,

I don’t need any of this other stuff.

I could forecast the economy better
than any way I know.”

http://wikipedia.org

https://pdodds.w3.uvm.edu
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Economics, Schmeconomics
Greenspan continues:
“The trouble is that we can’t figure that out. I’ve been
in the forecasting business for 50 years. I’m no better
than I ever was, and nobody else is. Forecasting 50
years ago was as good or as bad as it is today. And
the reason is that human nature hasn’t changed. We
can’t improve ourselves.”

Jon Stewart:

“You just bummed the @*!# out of
me.”

wildbluffmedia.com

 From the Daily Show (September 18, 2007)
 The full episode is here:

http://www.cc.com/video-clips/cenrt5/the-daily-show-with-jon-stewart-alan-greenspan
 Later interviews here and here.

https://pdodds.w3.uvm.edu
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Predicting social catastrophe isn’t easy...
“Greenspan Concedes Error on Regulation”
 …humbled Mr. Greenspan admitted that he had

put too much faith in the self-correcting power of
free markets …

 “Those of us who have looked to the self-interest
of lending institutions to protect shareholders’
equity, myself included, are in a state of shocked
disbelief”

 Rep. Henry A. Waxman: “Do you feel that your
ideology pushed you to make decisions that you
wish you had not made?”

 Mr. Greenspan conceded: “Yes, I’ve found a flaw. I
don’t know how significant or permanent it is. But
I’ve been very distressed by that fact.”

New York Times, October 23, 2008

https://pdodds.w3.uvm.edu
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Economics, Schmeconomics

James K. Galbraith:
NYT But there are at least 15,000 professional

economists in this country, and you’re saying only
two or three of them foresaw the mortgage crisis?
[JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics,
which claims to be a science? [JKG] It’s an
enormous blot on the reputation of the
profession. There are thousands of economists.
Most of them teach. And most of them teach a
theoretical framework that has been shown to be
fundamentally useless.

From the New York Times, 11/02/2008
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Other attempts to use SIR and co. elsewhere:
 Adoption of ideas/beliefs (Goffman & Newell,

1964) [11]

 Spread of rumors (Daley & Kendall, 1965) [8]

 Diffusion of innovations (Bass, 1969) [2]

 Spread of fanatical behavior (Castillo-Chávez &
Song, 2003)

 Spread of Feynmann diagrams (Bettencourt et al.,
2006)

Social contagion:
 SIR may apply sometimes …
 But we need new fundamental models.
 Next up: Thresholds.

https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/


PoCS
@pocsvox

Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation
models

Model output

Nutshell

Other kinds of prediction

Next

References

I

R

S
βI

1 − ρ

ρ

1 − βI

r
1 − r

.
.
.
.
.

.
88 of 97

We really should know social contagion is
different but …

Table 1. Illustrative studies of social contagion.

Authors Type(s) of social contagion
Research
approach

Conceptual
model
(linear/
dialogic/
hybrid)

1 McDougall (1920) Crime Conceptual/
theoretical

Linear

2 Blumer (1939) Crazes, manias, fads, financial
panic, patriotic hysteria

Conceptual/
theoretical

Linear

3 Milgram, et al. (1969) Crowd formation Quantitative Linear

4 Russel, et al. (1976) Jaywalking Quantitative Linear

5 Stephenson and Fielding
(1971)

Social rule violation Quantitative Linear

6 Kerckhoff and Back (1968);
Cohen, et al. (1978);
Colligan and Murphy
(1982)

Psychogenic illness Qualitative and
quantitative

Dialogic

7 Goethals and Perlstein
(1978); Wheeler and
Levine (1967) Wheeler
(1966)

Aggression in response to
socially undesirable
opinions

Quantitative Linear

8 Freedman and Perlick (1979) Expressions of appreciation Quantitative Linear

9 Pennebaker (1980) Coughing Quantitative Linear

10 Freedman, Birsky, and
Cavoukian (1980)

Expressions of enjoyment Quantitative Linear

11 Freedman, et al. (1980) Applause Quantitative Linear

12 Kirby and Corzine (1981) Stigma Qualitative Linear

13 Phillips (1983); Sheehan
(1983)

Aggression in dispersed
communities exposed to
mass media

Quantitative Linear

14 Rozin and Nemeroff (1990,
2002); Rozin, Millman,
and Nemeroff (1986)

Disgust Quantitative;
conceptual

Linear

15 Crandall (1988) Binge eating in sororities Quantitative Linear

16 Sullins (1991) Mood convergence in a
waiting room

Quantitative Linear

17 Rowe, Chassin, Presson,
Edwards, and Sherman
(1992); Ritter and
Holmes (1969)

Restraint reduction and
teenage smoking

Quantitative Linear

18 Rogers and Rowe (1993) Sex among youth Quantitative Linear

19 Levy and Nail (1993) Hysterical contagion, echo
(or imitation) contagion,
disinhibitory contagion

Quantitative Linear

(continued)

362 Culture & Psychology 21(3) “It’s contagious: Rethinking a metaphor
dialogically”
Warren and Power,
Culture & Psychology, 21, 359–379,
2015. [22]

 “Facebook will lose 80% of users by 2017, say
Princeton researchers” (Guardian, 2014)
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Figure 1: Google search query data for “Facebook” between January 2012 and July 2013
before and after removal of the artifactual October 2012 jump in search queries. Both data
sets are scaled such that 100 corresponds to the maximum weekly Google search queries for the set with
the jump removed over the plotted time period.
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Figure 2: Search query data for “Facebook” and “MySpace” obtained from Google Trends
overlaid on top of each other. The data for both curves are scaled such that 100 corresponds to the
maximum weekly Google search queries for ”Facebook” over the plotted time period. Search queries for
“MySpace” peak at 10% of the maximum weekly search queries for “Facebook” in this time period.

Figure Legends

Tables

“Epidemiological modeling of online social
network dynamics”
Spechler and Cannarella,
Availabe online at
http://arxiv.org/abs/1401.4208, 2014. [21]
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The Facebook Data Science team’s response:

 Mike Develin, Lada Adamic, and Sean Taylor.

https://pdodds.w3.uvm.edu
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