# **Biological Contagion**

Last updated: 2021/10/07, 17:44:59 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 | @pocsvox

### Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont























Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

The PoCSverse Biological Contagion 1 of 97

Introduct

Simple disease spreading models Background Prediction

More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of predictio



## These slides are brought to you by:



The PoCSverse Biological Contagion 2 of 97

#### Introduction

Simple disease spreading models Background

More models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



# These slides are also brought to you by:

Special Guest Executive Producer



On Instagram at pratchett\_the\_cat

The PoCSverse Biological Contagion 3 of 97

Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation models Model output Nutshell Other kinds of prediction Next



### Outline

### Introduction

### Simple disease spreading models

Background
Prediction
More models
Toy metapopulation models
Model output
Nutshell
Other kinds of prediction
Next

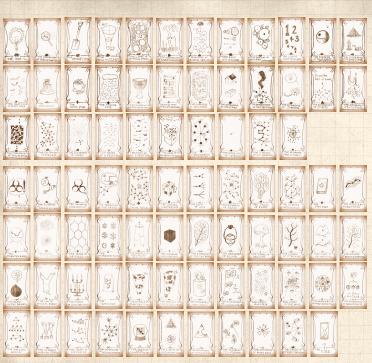
### References

The PoCSverse Biological Contagion 4 of 97

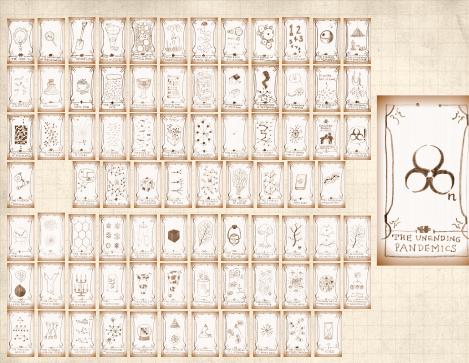
### Introduction

Simple disease spreading models

Background


Prediction

More models


Toy metapopulation models

Nutshell
Other kinds of prediction











### An awful recording: Wikipedia's list of epidemics from 430 BC on.

|                                                                                                                                            |                                                                                                                                                                                                                                                    | 원과 경기 (기계 : 1917   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912   1912 |               |                                                                                                                                                           |                                          |             |                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|-------------------------------------------------------------------------------------------|
| O W                                                                                                                                        | Article Talk                                                                                                                                                                                                                                       |                                                                                                             |               |                                                                                                                                                           | Read Edit Viewhis                        |             | gged in Talk Contributions                                                                |
| WIKIPEDIA<br>he Free Encyclopedia                                                                                                          |                                                                                                                                                                                                                                                    | epidemics                                                                                                   |               |                                                                                                                                                           |                                          |             |                                                                                           |
| Mein page<br>Contents<br>Featured content<br>Current events<br>Random article<br>Donate to Wikipedia<br>Wikipedia store                    | This article is a flat of epidemics of infectious disease. Widespread and chronic complaints such as heart disease and allogs are not included if they are not thought to be infectious.  This lattic is incomplete; you can help by expanding it. |                                                                                                             |               |                                                                                                                                                           |                                          |             |                                                                                           |
|                                                                                                                                            | Death toll (estimate)                                                                                                                                                                                                                              | Location +                                                                                                  | Date +        | Comment •                                                                                                                                                 | Disease •                                | Reference + | 00                                                                                        |
| teraction<br>Help<br>About Wikipedia<br>Community portal                                                                                   | ca. 75,000 -<br>100,000                                                                                                                                                                                                                            | Greece                                                                                                      | 429-426<br>BC | Known as Plague of<br>Athens, because it was<br>primarily in Athens.                                                                                      | unknown, similar to typhoid              |             | Contract of                                                                               |
| Percent charges Contact page bools What links here Related changes Upload file Special pages Permanent link Page information Wilddata item | ca. 30% of population                                                                                                                                                                                                                              | Europe, Western Asia,<br>Northern Africa                                                                    | 165-180       | Known as Antonine<br>Plague, due to the<br>name of the Roman<br>emperor in power at<br>the time.                                                          | unknown, symptoms<br>similar to smallpox |             | Plague panel with the<br>triumph of death. 1607<br>Deutsches Historische<br>Museum Berlin |
|                                                                                                                                            |                                                                                                                                                                                                                                                    | Europe                                                                                                      | 250-266<br>AD | Know as the Plague of<br>Cyprian named after<br>St. Cyprian Bishop of<br>Carthage.                                                                        | unknown, possibly smallpox               |             |                                                                                           |
| Ole this page<br>biosport<br>Dreate a book<br>Download as PDF<br>Printable version                                                         | ca. 40% of population                                                                                                                                                                                                                              | Europe                                                                                                      | 541-542       | Known as Plague of<br>Justinian, due to the<br>name of the Byzantine<br>emperor in power at<br>the time.                                                  | Bubonic plague                           | 01          | An artistic portrayal of<br>cholera which was<br>epidemic in the 19th<br>century          |
| اليونية<br>اليونية<br>Ductach<br>Simple English<br>//Edit Irids                                                                            | 30% to 70% of population                                                                                                                                                                                                                           | Europe                                                                                                      | 1346-<br>1350 | Known as "Black<br>Death" or Second<br>plague pandemic, first<br>return of the plague to<br>Europe after the<br>Justinianic plague of<br>the 6th century. | plague                                   | (2)         |                                                                                           |
|                                                                                                                                            | 5-15 million<br>(80% of<br>population)                                                                                                                                                                                                             | Mexico                                                                                                      | 1545-1548     | Cocoliztii                                                                                                                                                | viral hemorrhagic fever                  | आनाम        |                                                                                           |
|                                                                                                                                            | 2 - 2.5 million<br>(50% of<br>population)                                                                                                                                                                                                          | Mexico                                                                                                      | 1576          | Cocoliztii                                                                                                                                                | viral hemorrhagic fever                  | (6)(7)(6)   |                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                             | 1592-         |                                                                                                                                                           |                                          | ron         |                                                                                           |

The PoCSverse Biological Contagion 7 of 97

#### Introduction

Simple disease spreading models Background More models Toy metapopulation models Model output Next







A confusion of contagions:

The PoCSverse Biological Contagion 9 of 97

### Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models

Model output Nutshell Other kinds of prediction Next



### A confusion of contagions:



Did Harry Potter spread like a virus?

The PoCSverse Biological Contagion 9 of 97

#### Introduction

Simple disease spreading models

Background

More models Toy metapopulation

models Model output

Next



### A confusion of contagions:



Did Harry Potter spread like a virus?



Can disinformation be "infectious"?

The PoCSverse Biological Contagion 9 of 97

### Introduction

Simple disease spreading models Background

More models

Toy metapopulation

Model output Nutshell

Next



## A confusion of contagions:

- Did Harry Potter spread like a virus?
- Can disinformation be "infectious"?
- Suicide, violence?

The PoCSverse Biological Contagion 9 of 97

### Introduction

Simple disease spreading models

Backgroun Prediction

More models

Toy metapopulation
models

Model output Nutshell

Other kinds of prediction Next



## A confusion of contagions:

- Did Harry Potter spread like a virus?
- Can disinformation be "infectious"?
- Suicide, violence?
- Morality? Evil? Laziness? Stupidity? Happiness?

The PoCSverse Biological Contagion 9 of 97

### Introduction

Simple disease spreading models Background

More models

Toy metapopulation

Model output
Nutshell
Other kinds of prediction



### A confusion of contagions:

- Did Harry Potter spread like a virus?
- Can disinformation be "infectious"?
- Suicide, violence?
- Morality? Evil? Laziness? Stupidity? Happiness?
- & Religion?

The PoCSverse Biological Contagion 9 of 97

### Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation models Model output

Nutshell
Other kinds of predic

Next



### A confusion of contagions:

- Did Harry Potter spread like a virus?
- Can disinformation be "infectious"?
- Suicide, violence?
- Morality? Evil? Laziness? Stupidity? Happiness?
- & Religion?
- Democracy ...?

The PoCSverse Biological Contagion 9 of 97

### Introduction

Simple disease spreading models

Toy metapopulation



## A confusion of contagions:

- Did Harry Potter spread like a virus?
- Can disinformation be "infectious"?
- Suicide, violence?
- Morality? Evil? Laziness? Stupidity? Happiness?
- & Religion?
- Democracy ...?
- & Language? The alphabet? [10]

The PoCSverse Biological Contagion 9 of 97

# Introduction Simple disease

spreading models

Background

Prediction

More models

Toy metapopulation

models
Model output
Nutshell



## A confusion of contagions:

- Did Harry Potter spread like a virus?
- Can disinformation be "infectious"?
- Suicide, violence?
- Morality? Evil? Laziness? Stupidity? Happiness?
- Religion?
- Democracy ...?
- Language? The alphabet? [10]
- Stories?

The PoCSverse Biological Contagion 9 of 97

# Introduction Simple disease

spreading models

Background
Prediction
More models
Toy metapopulation
models
Model output

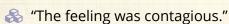


# Naturomorphisms

The PoCSverse Biological Contagion 10 of 97

#### Introduction

Simple disease spreading models Background


Prediction More models

Toy metapopulation models Model output

Nutshell
Other kinds of predictio



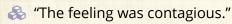
## Naturomorphisms



The PoCSverse Biological Contagion 10 of 97

#### Introduction

Simple disease spreading models Background


More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction
Next



## Naturomorphisms



"The news spread like wildfire."

The PoCSverse Biological Contagion 10 of 97

#### Introduction

Simple disease spreading models

Prediction

More models

Toy metapopulation

models

Model output

Nutshell

References

Next



### **Naturomorphisms**



"The feeling was contagious."



"The news spread like wildfire."

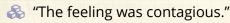


"Freedom is the most contagious virus known to man."

—Hubert H. Humphrey, Johnson's vice president

The PoCSverse Biological Contagion 10 of 97

### Introduction


Simple disease spreading models

More models

Toy metapopulation



### Naturomorphisms



"The news spread like wildfire."

"Freedom is the most contagious virus known to man."

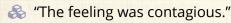
—Hubert H. Humphrey, Johnson's vice president

"Nothing is so contagious as enthusiasm."

—Samuel Taylor Coleridge

The PoCSverse Biological Contagion 10 of 97

#### Introduction


Simple disease spreading models Background

Toy metapopulation models Model output

Nutshell
Other kinds of prediction
Next



### Naturomorphisms



"The news spread like wildfire."

"Freedom is the most contagious virus known to man."

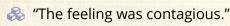
—Hubert H. Humphrey, Johnson's vice president

"Nothing is so contagious as enthusiasm."

—Samuel Taylor Coleridge

## Optimism according to Ambrose Bierce:

The doctrine that everything is beautiful, including what is ugly, everything good, especially the bad, and everything right that is wrong. ...


The PoCSverse Biological Contagion 10 of 97

# Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction



### Naturomorphisms



"The news spread like wildfire."

"Freedom is the most contagious virus known to man."

—Hubert H. Humphrey, Johnson's vice president

🙈 "Nothing is so contagious as enthusiasm."

—Samuel Taylor Coleridge

# Optimism according to Ambrose Bierce:

The doctrine that everything is beautiful, including what is ugly, everything good, especially the bad, and everything right that is wrong. ... It is hereditary, but fortunately not contagious.

The PoCSverse Biological Contagion 10 of 97

# Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction



Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass.

The PoCSverse Biological Contagion 11 of 97

## Introduction

Simple disease spreading models

Prediction More models

> Toy metapopulation models Model output

Nutshell
Other kinds of predictio



Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke

The PoCSverse Biological Contagion 11 of 97

## Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation models

Model output

Other kinds of predict



### Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other,

The PoCSverse Biological Contagion 11 of 97

## Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation

models

Nutshell

Other kinds of prediction Next



### Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter,

The PoCSverse Biological Contagion 11 of 97

### Introduction

Simple disease spreading models

Toy metapopulation



### Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter, sway their bodies in unison,

The PoCSverse Biological Contagion 11 of 97

### Introduction

Simple disease spreading models Background

More models

Toy metapopulation

Model output

Other kinds of prediction Next



### Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter, sway their bodies in unison, hum one song or break forth in anger and denunciation,

The PoCSverse Biological Contagion 11 of 97

### Introduction

Simple disease spreading models Background Prediction

Toy metapopulation

Model output Nutshell

Other kinds of prediction Next



### Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter, sway their bodies in unison, hum one song or break forth in anger and denunciation, there is the overpowering feeling that in this country we have come nearer the brotherhood of man than ever before.

The PoCSverse Biological Contagion 11 of 97

#### Introduction

Simple disease spreading models Background Prediction

More models

Toy metapopulation

Model output

Other kinds of prediction



### Eric Hoffer, 1902-1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter, sway their bodies in unison, hum one song or break forth in anger and denunciation, there is the overpowering feeling that in this country we have come nearer the brotherhood of man than ever before.



Hoffer was an interesting fellow...

The PoCSverse Biological Contagion 11 of 97

#### Introduction

Simple disease spreading models

Toy metapopulation



Hoffer's most famous work: "The True Believer: Thoughts On The Nature Of Mass Movements" (1951) [12]

Aphorisms-aplenty:

The PoCSverse Biological Contagion 12 of 97

### Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation models Model output

Other kinds of p



Hoffer's most famous work: "The True Believer: Thoughts On The Nature Of Mass Movements"  $(1951)^{[12]}$ 

### Aphorisms-aplenty:

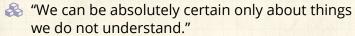


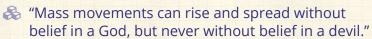
"We can be absolutely certain only about things" we do not understand."

The PoCSverse Biological Contagion 12 of 97

### Introduction

Simple disease spreading models


More models


Toy metapopulation



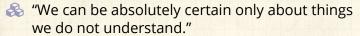
Hoffer's most famous work: "The True Believer: Thoughts On The Nature Of Mass Movements" (1951) [12]

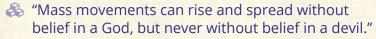
### Aphorisms-aplenty:





The PoCSverse Biological Contagion 12 of 97


# Introduction Simple disease


spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction



Hoffer's most famous work: "The True Believer: Thoughts On The Nature Of Mass Movements" (1951) [12]

### Aphorisms-aplenty:





"Where freedom is real, equality is the passion of the masses. The PoCSverse Biological Contagion 12 of 97

# Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of readiction

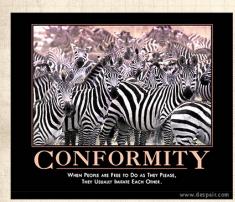


# The spread of fanaticism

Hoffer's most famous work: "The True Believer: Thoughts On The Nature Of Mass Movements" (1951) [12]

### Aphorisms-aplenty:

- "We can be absolutely certain only about things we do not understand."
- "Mass movements can rise and spread without belief in a God, but never without belief in a devil."
- "Where freedom is real, equality is the passion of the masses. Where equality is real, freedom is the passion of a small minority."


The PoCSverse Biological Contagion 12 of 97

# Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction



### **Imitation**



"When people are free to do as they please, they usually imitate each other."

—Eric Hoffer
"The Passionate State
of Mind" [13]

The PoCSverse Biological Contagion 13 of 97

#### Introduction

Simple disease spreading models

Background

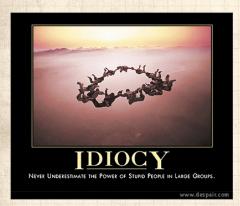
Prediction

More models

Toy metapopulation

Model output

Other kinds of predi


Next

References



despair.com

### The collective...



"Never Underestimate the Power of Stupid People in Large Groups." The PoCSverse Biological Contagion 14 of 97

#### Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation models

Model output

Nutshell

Other kinds of pred

Next

References



despair.com

# Examples of non-disease spreading:

### Interesting infections:



Spreading of certain buildings in the US:

The PoCSverse Biological Contagion 15 of 97

### Introduction

Simple disease spreading models Background

More models

Toy metapopulation

Next



### Marbleization of the US:

The PoCSverse Biological Contagion 16 of 97

#### Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation

models

Model output

Nutshell


Other kinds of predictio

Next



# The most terrifying contagious outbreak?

### Google books Ngram Viewer



The PoCSverse Biological Contagion 17 of 97

### Introduction

Simple disease spreading models Background

Prediction
More models

Toy metapopulation models

Nutshell Other kinds

Next











#### The PoCSverse Biological Contagion 18 of 97

#### Introduction

Simple disease spreading models Background Prediction

More models

Toy metapopulation models Model output

Nutshell Other kinds of prediction Next



**Definitions** 

The PoCSverse Biological Contagion 19 of 97

#### Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models

Model output
Nutshell
Other kinds of predicti

References



### **Definitions**



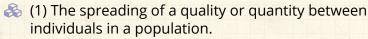
(1) The spreading of a quality or quantity between individuals in a population.

The PoCSverse Biological Contagion 19 of 97 Introduction

Simple disease spreading models

Background

More models


Toy metapopulation

Model output

References



### **Definitions**



(2) A disease itself: the plague, a blight, the dreaded lurgi, ... The PoCSverse Biological Contagion 19 of 97

### Introduction

Simple disease spreading models

Prediction

More models

Toy metapopulation

Model output Nutshell

Other kinds of prediction Next



### **Definitions**

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...
- from Latin: con = 'with' + tangere 'to touch.'

The PoCSverse Biological Contagion 19 of 97

### Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation models

Nutshell
Other kinds of predicti

5 6



### **Definitions**

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...
- from Latin: con = 'with' + tangere 'to touch.'
- Contagion has unpleasant overtones...

The PoCSverse Biological Contagion 19 of 97

#### Introduction

Simple disease spreading models Background

Prediction Mara model

Toy metapopulation models Model output

Nutshell Other kinds of predict



### **Definitions**

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...
- from Latin: con = 'with' + tangere 'to touch.'
- Contagion has unpleasant overtones...
- Just Spreading might be a more neutral word

The PoCSverse Biological Contagion 19 of 97

#### Introduction

Simple disease spreading models

Toy metapopulation



### Definitions

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...
- from Latin: con = 'with' + tangere 'to touch.'
- Contagion has unpleasant overtones...
- Just Spreading might be a more neutral word
- But contagion is kind of exciting...

The PoCSverse Biological Contagion 19 of 97

#### Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation models Model output Nutshell

Other kinds of property Next



Two main classes of contagion

The PoCSverse Biological Contagion 20 of 97

# Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation models

Model output
Nutshell

References



### Two main classes of contagion

1. Infectious diseases

The PoCSverse Biological Contagion 20 of 97

### Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



### Two main classes of contagion

1. Infectious diseases

2. Social contagion

The PoCSverse Biological Contagion 20 of 97

### Introduction

Simple disease spreading models Background

More models

Toy metapopulation

Model output

Next



### Two main classes of contagion

- 1. Infectious diseases: tuberculosis, HIV, ebola, SARS, influenza, zombification, ...
- 2. Social contagion

The PoCSverse Biological Contagion 20 of 97 Introduction

Simple disease spreading models

Prediction

More models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



### Two main classes of contagion

- Infectious diseases: tuberculosis, HIV, ebola, SARS, influenza, zombification, ...
- 2. Social contagion: fashion, word usage, rumors, uprisings, religion, stories about zombies, ...

The PoCSverse Biological Contagion 20 of 97

### Introduction

Simple disease spreading models Background

Prediction

Toy metapopulation models

Model output Nutshell

Other kinds of predicti Next



# Archival footage from the Black Plague

The PoCSverse Biological Contagion 21 of 97

### Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation

Model output
Nutshell
Other kinds of prediction
Next

References

models



### Community—S2E6: Epidemiology

The PoCSverse Biological Contagion 22 of 97

#### Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation

models

Model output

Nutshell

Other kinds of prediction

Next



### Outline

#### introduction

# Simple disease spreading models Background

Prediction
More models
Toy metapopulation models
Model output
Nutshell
Other kinds of prediction

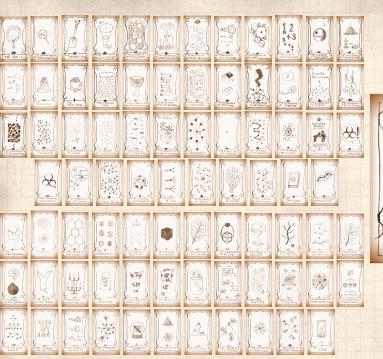
Reference

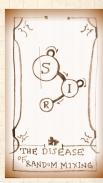
The PoCSverse Biological Contagion 23 of 97

# Introduction

Simple disease spreading models

#### Background Prediction


More models


Toy metapopulation models

Model output
Nutshell
Other kinds of prediction

References







The standard SIR model [18]

The PoCSverse Biological Contagion 25 of 97

Introduction

Simple disease spreading models

Background

More models
Toy metapopulation

models Model output Nutshell

References



The standard SIR model [18]



= basic model of disease contagion

The PoCSverse Biological Contagion 25 of 97

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation Model output Nutshell

References



### The standard SIR model [18]

🚓 = basic model of disease contagion

Three states:

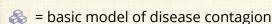
The PoCSverse Biological Contagion 25 of 97

### Introduction

Simple disease spreading models

#### Background Prediction

Prediction More models


Toy metapopulation models

Model output
Nutshell
Other kinds of predict

References



### The standard SIR model [18]



A Three states:

1. S = Susceptible

The PoCSverse Biological Contagion 25 of 97

### Introduction

Simple disease spreading models

#### Background Prediction

More models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



### The standard SIR model [18]



= basic model of disease contagion



Three states:

- 1. S = Susceptible
- 2. I = Infective/Infectious

The PoCSverse Biological Contagion 25 of 97

### Introduction

Simple disease spreading models

#### Background

More models

Toy metapopulation

Next



### The standard SIR model [18]



= basic model of disease contagion



Three states:

- 1. S = Susceptible
- 2. I = Infective/Infectious
- 3. R = Recovered

The PoCSverse Biological Contagion 25 of 97

### Introduction

Simple disease spreading models

#### Background

More models

Toy metapopulation



### The standard SIR model [18]

- = basic model of disease contagion
- Three states:
  - 1. S = Susceptible
  - 2. I = Infective/Infectious
  - 3. R = Recovered or Removed or Refractory

The PoCSverse Biological Contagion 25 of 97

### Introduction

Simple disease spreading models

### Background

Toy metapopulation



### The standard SIR model [18]

- = basic model of disease contagion
- Three states:
  - 1. S = Susceptible
  - 2. I = Infective/Infectious
  - 3. R = Recovered or Removed or Refractory

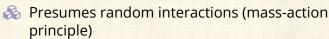
$$\Re S(t) + I(t) + R(t) = 1$$

The PoCSverse Biological Contagion 25 of 97

### Introduction

Simple disease spreading models

### Background


Toy metapopulation



### The standard SIR model [18]

- = basic model of disease contagion
- Three states:
  - 1. S = Susceptible
  - 2. I = Infective/Infectious
  - 3. R = Recovered or Removed or Refractory

$$S(t) + I(t) + R(t) = 1$$



The PoCSverse Biological Contagion 25 of 97

Introduction

Simple disease spreading models

Background

Toy metapopulation





### The standard SIR model [18]

- 🚓 = basic model of disease contagion
- Three states:
  - 1. S = Susceptible
  - 2. I = Infective/Infectious
  - 3. R = Recovered or Removed or Refractory

$$\Re S(t) + I(t) + R(t) = 1$$

- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)

The PoCSverse Biological Contagion 25 of 97

### Introduction

Simple disease spreading models Background

#### Prediction

More models

Toy metapopulation models Model output

Nutshell
Other kinds of prediction



### The standard SIR model [18]

- 🙈 = basic model of disease contagion
- Three states:
  - 1. S = Susceptible
  - 2. I = Infective/Infectious
  - 3. R = Recovered or Removed or Refractory

$$\Re S(t) + I(t) + R(t) = 1$$

- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

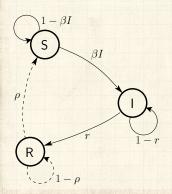
The PoCSverse Biological Contagion 25 of 97

#### Introduction

Simple disease spreading models
Background

#### Prediction

Prediction


More models

Toy metapopulation models

Nutshell
Other kinds of prediction



### Discrete time automata example:



The PoCSverse Biological Contagion 26 of 97

#### Introduction

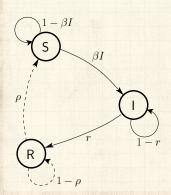
Simple disease spreading models

#### Background

Prediction

More models

Toy metapopulation models


Model output

Next

Other kinds of predic



### Discrete time automata example:



Transition Probabilities:

The PoCSverse Biological Contagion 26 of 97

#### Introduction

Simple disease spreading models

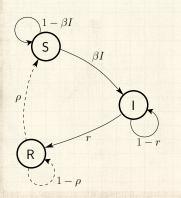
#### Background

Prediction

More models

Toy metapopulation

odels


Model output

Other kinds of predict

#### References



## Discrete time automata example:



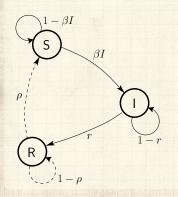
Transition Probabilities:

 $\beta$  for being infected given contact with infected

The PoCSverse Biological Contagion 26 of 97

#### Introduction

Simple disease spreading models


#### Background

More models Toy metapopulation





## Discrete time automata example:



Transition Probabilities:

 $\beta$  for being infected given contact with infected r for recovery

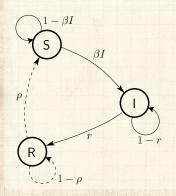
The PoCSverse Biological Contagion 26 of 97

Introduction

Simple disease spreading models

Background

More models


Toy metapopulation

Model output Nutshell

Other kinds of prediction Next



## Discrete time automata example:



Transition Probabilities:

 $\beta$  for being infected given contact with infected r for recovery  $\rho$  for loss of immunity

The PoCSverse Biological Contagion 26 of 97

Introduction

Simple disease spreading models

Background

More models
Toy metapopulation

nodels Nodel output

Other kinds of predicti



Original models attributed to

#### The PoCSverse Biological Contagion 27 of 97

#### Introduction

# Simple disease spreading models

#### Background

Prediction

More models

Toy metapopulation

Model output

Nutshell

Other kinds of predictio



## Original models attributed to



4 1920's: Reed and Frost

The PoCSverse Biological Contagion 27 of 97

## Introduction

Simple disease spreading models

#### Background

More models Toy metapopulation

Model output

Next



## Original models attributed to

🙈 1920's: Reed and Frost

1920's/1930's: Kermack and McKendrick [14, 16, 15]

The PoCSverse Biological Contagion 27 of 97

## Introduction

Simple disease spreading models

#### Background Prediction

rediction

More models

Toy metapopulation

odels

Nutshell

Other kinds of prediction Next



## Original models attributed to



4 1920's: Reed and Frost



1920's/1930's: Kermack and McKendrick [14, 16, 15]



Coupled differential equations with a mass-action principle

The PoCSverse Biological Contagion 27 of 97

## Introduction

Simple disease spreading models

## Background

Toy metapopulation



## Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta \underline{IS} + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta \underline{IS} - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

 $\beta$ , r, and  $\rho$  are now rates.

The PoCSverse Biological Contagion 28 of 97

## Introduction

Simple disease spreading models

#### Background

Prediction

Toy metapopulation

Model output

Other kinds of prediction



Reproduction Number  $R_0$ 

The PoCSverse Biological Contagion 29 of 97

## Introduction

Simple disease spreading models

#### Background

Prediction

More models

Toy metapopulation models

Model output Nutshell

Next



# Reproduction Number $R_0$



 $\Re R_0$  = expected number of infected individuals resulting from a single initial infective

The PoCSverse Biological Contagion 29 of 97

## Introduction

Simple disease spreading models

#### Background

More models Toy metapopulation



# Reproduction Number $R_0$

- $\Re R_0$  = expected number of infected individuals resulting from a single initial infective
- $\Leftrightarrow$  Epidemic threshold: If  $R_0 > 1$ , 'epidemic' occurs.

The PoCSverse Biological Contagion 29 of 97

## Introduction

Simple disease spreading models

#### Background Prediction

rediction

Toy metapopulation

Model output

Nutshell
Other kinds of prediction



# Reproduction Number $R_0$

- $R_0$  = expected number of infected individuals resulting from a single initial infective
- $\clubsuit$  Epidemic threshold: If  $R_0 > 1$ , 'epidemic' occurs.
- $\Re$  Exponential take off:  $R_0^n$  where n is the number of generations.

The PoCSverse Biological Contagion 29 of 97

## Introduction

Simple disease spreading models

#### Background Prediction

More model

Toy metapopulation models

Model output

Other kinds of prediction



# Reproduction Number $R_0$

- $R_0$  = expected number of infected individuals resulting from a single initial infective
- $\Re$  Epidemic threshold: If  $R_0 > 1$ , 'epidemic' occurs.
- & Exponential take off:  $R_0^n$  where n is the number of generations.
- $\ref{eq:second}$  Fantastically awful notation convention:  $R_0$  and the R in SIR.

The PoCSverse Biological Contagion 29 of 97

#### Introductio

Simple disease spreading models Background

#### Prediction

More models

Toy metapopulation models

Nutshell
Other kinds of prodic

Next



## Discrete version:



Set up: One Infective in a randomly mixing population of Susceptibles

The PoCSverse Biological Contagion 30 of 97

## Introduction

Simple disease spreading models

## Background

More models Toy metapopulation

Model output

Next



#### Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- $\clubsuit$  At time t=0, single infective random bumps into a Susceptible

The PoCSverse Biological Contagion 30 of 97

Simple disease spreading models Background

#### Prediction

Prediction More models

Toy metapopulation

Aodel output

Nutshell

Next



#### Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- $\clubsuit$  At time t=0, single infective random bumps into a Susceptible
- A Probability of transmission =  $\beta$

The PoCSverse Biological Contagion 30 of 97

## Introduction

Simple disease spreading models Background

Toy metapopulation



## Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- $\clubsuit$  At time t=0, single infective random bumps into a Susceptible
- A Probability of transmission =  $\beta$
- At time t=1, single Infective remains infected with probability 1-r

The PoCSverse Biological Contagion 30 of 97

## Introduction

Simple disease spreading models Background

Toy metapopulation



## Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- $\clubsuit$  At time t=0, single infective random bumps into a Susceptible
- $\Re$  Probability of transmission =  $\beta$
- At time t=1, single Infective remains infected with probability 1-r
- $\Leftrightarrow$  At time t=k, single Infective remains infected with probability  $(1-r)^k$

The PoCSverse Biological Contagion 30 of 97

#### Introduction

Simple disease spreading models Background

#### Prediction

More models

Toy metapopulation

## Model output

Other kinds of predictio



#### Discrete version:



Expected number infected by original infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

The PoCSverse Biological Contagion 31 of 97

## Introduction

Simple disease spreading models

#### Background

More models Toy metapopulation

Next





## Discrete version:



Expected number infected by original infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$=\beta \left(1+(1-r)+(1-r)^2+(1-r)^3+...\right)$$

The PoCSverse Biological Contagion 31 of 97

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation

Next



## Discrete version:

Expected number infected by original infective:

$$\begin{split} R_0 &= \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots \\ &= \beta \left( 1 + (1-r) + (1-r)^2 + (1-r)^3 + \dots \right) \end{split}$$

$$=\beta \frac{1}{1-(1-r)}$$

The PoCSverse Biological Contagion 31 of 97

### Introduction

Simple disease spreading models

#### Background

Toy metapopulation



## Discrete version:

Expected number infected by original infective:

$$\begin{split} R_0 &= \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots \\ &= \beta \left( 1 + (1-r) + (1-r)^2 + (1-r)^3 + \dots \right) \\ &= \beta \frac{1}{1-(1-r)} = \beta/r \end{split}$$

The PoCSverse Biological Contagion 31 of 97

Introduction

Simple disease spreading models

Background

Toy metapopulation



## Discrete version:



Expected number infected by original infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left( 1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$

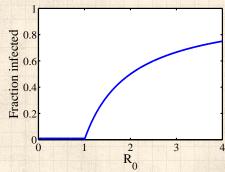
$$=\beta \frac{1}{1-(1-r)} = \beta/r$$

For  $S(0) \simeq 1$  initial susceptibles (1 - S(0) = R(0)) = fraction initially immune):

$$R_0 = S(0)\beta/r$$

The PoCSverse Biological Contagion 31 of 97

Introduction


Simple disease spreading models

Background

Toy metapopulation



## Example of epidemic threshold:



Continuous phase transition.

Fine idea from a simple model.

The PoCSverse Biological Contagion 32 of 97

#### Introduction

Simple disease spreading models

#### Background

Toy metapopulation



## For the continuous version



Second equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta SI - rI$$

The PoCSverse Biological Contagion 33 of 97

## Introduction

Simple disease spreading models

#### Background

More models

Toy metapopulation

Model output

Nutshell

Next



## For the continuous version



Second equation:

$$\frac{\mathsf{d}}{\mathsf{d}t}I = \beta SI - rI$$

$$\frac{\mathsf{d}}{\mathsf{d}t}I = (\beta S - r)I$$

The PoCSverse Biological Contagion 33 of 97

#### Introduction

Simple disease spreading models

## Background

More models

Toy metapopulation

Model output

Next



## For the continuous version



Second equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta SI - rI$$

$$\frac{\mathsf{d}}{\mathsf{d}t}I = (\beta S - r)I$$



Number of infectives grows initially if

$$\beta S(0) - r > 0$$

where  $S(0) \simeq 1$ .

The PoCSverse Biological Contagion 33 of 97

Introduction

Simple disease spreading models

Background

Toy metapopulation



## For the continuous version



Second equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta SI - rI$$

$$\frac{\mathrm{d}}{\mathrm{d}t}I = (\beta S - r)I$$



Number of infectives grows initially if

$$\beta S(0) - r > 0 \Rightarrow \beta S(0) > r$$

where  $S(0) \simeq 1$ .

The PoCSverse Biological Contagion 33 of 97

Introduction

Simple disease spreading models

Background

Toy metapopulation



## For the continuous version



Second equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta SI - rI$$

$$\frac{\mathsf{d}}{\mathsf{d}t}I = (\beta S - r)I$$



Number of infectives grows initially if

$$\beta S(0) - r > 0 \Rightarrow \beta S(0) > r \Rightarrow \frac{\beta S(0)}{r} > 1$$

where  $S(0) \simeq 1$ .

The PoCSverse Biological Contagion 33 of 97

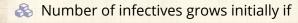
Introduction

Simple disease spreading models

Background

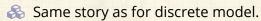
Toy metapopulation




## For the continuous version



Second equation:


$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta SI - rI$$

$$\frac{\mathsf{d}}{\mathsf{d}t}I = (\beta S - r)I$$



$$\beta S(0) - r > 0 \Rightarrow \beta S(0) > r \Rightarrow \frac{\beta S(0)}{r} > 1$$

where  $S(0) \simeq 1$ .



The PoCSverse Biological Contagion 33 of 97

Introduction

Simple disease spreading models Background

Toy metapopulation



Many variants of the SIR model:

The PoCSverse Biological Contagion 34 of 97

#### Introduction

Simple disease spreading models

#### Background

Prediction

More models

Toy metapopulation models

Model output

Other kinds of prediction



## Many variants of the SIR model:



SIS: susceptible-infective-susceptible

The PoCSverse Biological Contagion 34 of 97

#### Introduction

Simple disease spreading models

#### Background

More models

Toy metapopulation

Model output

Next



## Many variants of the SIR model:



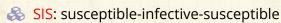
SIS: susceptible-infective-susceptible



SIRS: susceptible-infective-recovered-susceptible

The PoCSverse Biological Contagion 34 of 97

#### Introduction


Simple disease spreading models

#### Background

Toy metapopulation



## Many variants of the SIR model:



SIRS: susceptible-infective-recovered-susceptible

& compartment models (age or gender partitions)

The PoCSverse Biological Contagion 34 of 97

#### Introduction

Simple disease spreading models

#### Background Prediction

rediction

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



## Many variants of the SIR model:



SIS: susceptible-infective-susceptible



SIRS: susceptible-infective-recovered-susceptible



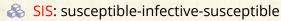
compartment models (age or gender partitions)



more categories such as 'exposed' (SEIRS)

The PoCSverse Biological Contagion 34 of 97

## Introduction


Simple disease spreading models

## Background

Toy metapopulation



## Many variants of the SIR model:



SIRS: susceptible-infective-recovered-susceptible

compartment models (age or gender partitions)

more categories such as 'exposed' (SEIRS)

recruitment (migration, birth)

The PoCSverse Biological Contagion 34 of 97

#### Introduction

Simple disease spreading models Background

Toy metapopulation



# Watch someone else pretend to save the world:



The PoCSverse Biological Contagion 35 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation

Model output Nutshell

Other kinds of prediction Next



# Save the world yourself:

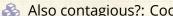


The PoCSverse Biological Contagion 36 of 97

Introduction

Simple disease spreading models

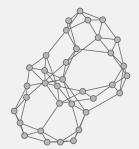
Background


More models Toy metapopulation Model output

References

Next




And you can be the virus.



Also contagious?: Cooperative games ...

# Neural reboot—Save another pretend world with Vax: ♂

#### Lesson 4: Quarantine



Vaccines take time to 'kick in' so they're ineffective if an infection has already begun to spread.

Start >

The PoCSverse Biological Contagion 37 of 97

#### Introduction

Simple disease spreading models

### Background

Prediction

More models

Toy metapopulation

Model output

Other kinds of prediction

#### References





Maderia

Enidomics

Vaccin

. ..

## Outline

## Simple disease spreading models

### Prediction

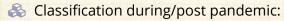
The PoCSverse Biological Contagion 38 of 97

### Introduction

Simple disease spreading models Background

#### Prediction

More models Toy metapopulation


Model output

Next



## Pandemic severity index (PSI)

U.S. Gov.





CDC



Category based.



1-5 scale.



Modeled on the Saffir-Simpson hurricane scale .

The PoCSverse Biological Contagion 39 of 97

Introduction

Simple disease spreading models

Prediction More models

Toy metapopulation



#### The PoCSverse Biological Contagion 40 of 97

### Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of prediction

### Next References



1. Can we predict the size of an epidemic?

#### The PoCSverse Biological Contagion 40 of 97

### Introduction

Simple disease spreading models Background

#### Prediction

More models Toy metapopulation models

Model output
Nutshell
Other kinds of predictio

#### References

Next



- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number  $R_0$ ?

The PoCSverse Biological Contagion 40 of 97

## Introduction

Simple disease spreading models

Background

### Prediction

More models

Toy metapopulation models Model output Nutshell Other kinds of predictio



- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number  $R_0$ ?

 $R_0$  approximately same for all of the following:

The PoCSverse Biological Contagion 40 of 97

## Introduction

Simple disease spreading models

### Prediction

More models

Toy metapopulation models Model output Nutshell

Other kinds of pro Next



- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number  $R_0$ ?

# $R_0$ approximately same for all of the following:

 $\implies$  1918-19 "Spanish Flu"  $\sim$  75,000,000 world-wide, 500,000 deaths in US.

The PoCSverse Biological Contagion 40 of 97

### Introduction

Simple disease spreading models

#### Prediction More models

Toy metapopulation models

Model output

Other kinds of pr

Next



- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number  $R_0$ ?

# $R_0$ approximately same for all of the following:

- \$ 1918-19 "Spanish Flu"  $\sim$  75,000,000 world-wide, 500,000 deaths in US.
- $\approx$  1957-58 "Asian Flu"  $\sim$  2,000,000 world-wide, 70,000 deaths in US.

The PoCSverse Biological Contagion 40 of 97

### Introduction

Simple disease spreading models

### Prediction

Toy metapopulation models Model output Nutshell

Next



- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number  $R_0$ ?

# $R_0$ approximately same for all of the following:

- ♣ 1918-19 "Spanish Flu" ~ 75,000,000 world-wide, 500,000 deaths in US.
- 1957-58 "Asian Flu" ~ 2,000,000 world-wide, 70,000 deaths in US.
- 1968-69 "Hong Kong Flu" ~ 1,000,000 world-wide, 34.000 deaths in US.

The PoCSverse Biological Contagion 40 of 97

Simple disease spreading models

### Prediction

Toy metapopulation



- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number  $R_0$ ?

# $R_0$ approximately same for all of the following:

- 3 1957-58 "Asian Flu"  $\sim$  2,000,000 world-wide, 70,000 deaths in US.
- \$ 1968-69 "Hong Kong Flu"  $\sim$  1,000,000 world-wide, 34,000 deaths in US.
- & 2003 "SARS Epidemic"  $\sim$  800 deaths world-wide.

The PoCSverse Biological Contagion 40 of 97

#### Introduct

Simple disease spreading models

Background

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of predictio



As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:

The PoCSverse Biological Contagion 41 of 97

### Introduction

Simple disease spreading models

Background

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of prediction Next



As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:



earthquakes (Gutenberg-Richter law)

The PoCSverse Biological Contagion 41 of 97

### Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation Next



As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:



earthquakes (Gutenberg-Richter law)



& city sizes, forest fires, war fatalities

The PoCSverse Biological Contagion 41 of 97

#### Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation Next



As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:



earthquakes (Gutenberg-Richter law)



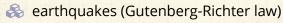
& city sizes, forest fires, war fatalities



wealth distributions

The PoCSverse Biological Contagion 41 of 97

### Introduction


Simple disease spreading models Background

#### Prediction More models

Toy metapopulation



# As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:



🚓 city sizes, forest fires, war fatalities

& wealth distributions

🚓 'popularity' (books, music, websites, ideas)

The PoCSverse Biological Contagion 41 of 97

### Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of prediction Next



# As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:

- earthquakes (Gutenberg-Richter law)
- 🚓 city sizes, forest fires, war fatalities
- wealth distributions
- 🗞 'popularity' (books, music, websites, ideas)
- & Epidemics?

The PoCSverse Biological Contagion 41 of 97

#### Introduction

Simple disease spreading models Background Prediction

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of prediction



### As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:

- earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- wealth distributions
- 'popularity' (books, music, websites, ideas)
- Epidemics?

Power law distributions are common but not obligatory...

The PoCSverse Biological Contagion 41 of 97

#### Introduction

Simple disease spreading models Prediction

Toy metapopulation



As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:

- 🙈 earthquakes (Gutenberg-Richter law)
- dity sizes, forest fires, war fatalities
- 🙈 wealth distributions
- 🚓 'popularity' (books, music, websites, ideas)
- Epidemics?

Power law distributions are common but not obligatory...

Really, what about epidemics?

The PoCSverse Biological Contagion 41 of 97

Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation models
Model output
Nutshell
Other kinds of prediction
Next



# As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:

- 🙈 earthquakes (Gutenberg-Richter law)
- dity sizes, forest fires, war fatalities
- wealth distributions
- 🚓 'popularity' (books, music, websites, ideas)
- Epidemics?

Power law distributions are common but not obligatory...

# Really, what about epidemics?

Simply hasn't attracted much attention.

The PoCSverse Biological Contagion 41 of 97

#### Introduction

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output

Simple disease



# As we know, heavy-tailed size distributions are somewhat prevalent in complex systems:

- 🙈 earthquakes (Gutenberg-Richter law)
- 🗞 city sizes, forest fires, war fatalities
- wealth distributions
- 🍪 'popularity' (books, music, websites, ideas)
- Epidemics?

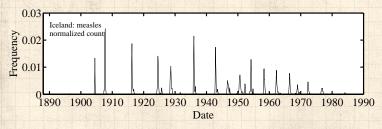
Power law distributions are common but not obligatory...

### Really, what about epidemics?

- Simply hasn't attracted much attention.
- Data not as clean as for other phenomena.

The PoCSverse Biological Contagion 41 of 97

#### Introduc


Simple disease spreading models Background Prediction More models

Toy metapopulation models
Model output
Nutshell
Other kinds of prediction



# Feeling III in Iceland

Caseload recorded monthly for range of diseases in Iceland, 1888-1990



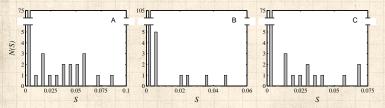


Treat outbreaks separated in time as 'novel' diseases.

The PoCSverse Biological Contagion 42 of 97

### Introduction

Simple disease spreading models


#### Prediction More models

Toy metapopulation



# Really not so good at all in Iceland

Epidemic size distributions N(S) for Measles, Rubella, and Whooping Cough.



Spike near S=0, relatively flat otherwise.

The PoCSverse Biological Contagion 43 of 97

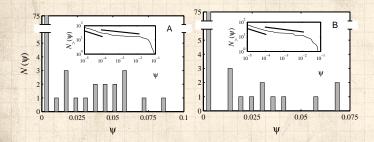
### Introduction

Simple disease spreading models

Background

#### Prediction

More models


Toy metapopulation models

Nutshell

Next



### Measles & Pertussis



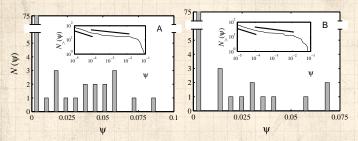
The PoCSverse Biological Contagion 44 of 97

### Introduction

Simple disease spreading models Background

#### Prediction

More models


Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



### Measles & Pertussis



### Insert plots:

Complementary cumulative frequency distributions:

$$\mathsf{N}(\Psi'>\Psi)\propto \Psi^{-\gamma+1}$$

Limited scaling with a possible break.

The PoCSverse Biological Contagion 44 of 97

### Introduction

Simple disease spreading models

#### Prediction More models

Toy metapopulation models Model output Nutshell



Measured values of  $\gamma$ :

The PoCSverse Biological Contagion 45 of 97

### Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation models Model output Nutshell

Other kinds Next



### Measured values of $\gamma$ :

 $\clubsuit$  measles: 1.40 (low  $\Psi$ ) and 1.13 (high  $\Psi$ )

The PoCSverse Biological Contagion 45 of 97

# Introduction

Simple disease spreading models

#### Prediction

More models

Toy metapopulation models Model output

Nutshell

Next



### Measured values of $\gamma$ :

 $\clubsuit$  measles: 1.40 (low  $\Psi$ ) and 1.13 (high  $\Psi$ )

 $\clubsuit$  pertussis: 1.39 (low  $\Psi$ ) and 1.16 (high  $\Psi$ )

The PoCSverse Biological Contagion 45 of 97

### Introduction

Simple disease spreading models

Background

#### Prediction

More models

Toy metapopulation models

Model output Nutshell

Other kinds of predic Next



### Measured values of $\gamma$ :

 $\clubsuit$  measles: 1.40 (low  $\Psi$ ) and 1.13 (high  $\Psi$ )

 $\clubsuit$  pertussis: 1.39 (low  $\Psi$ ) and 1.16 (high  $\Psi$ )

 $\Leftrightarrow$  Expect  $2 \le \gamma < 3$  (finite mean, infinite variance)

The PoCSverse Biological Contagion 45 of 97

# Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation

Model output Nutshell

Other kinds of prediction Next



### Measured values of $\gamma$ :

 $\clubsuit$  measles: 1.40 (low  $\Psi$ ) and 1.13 (high  $\Psi$ )

 $\clubsuit$  pertussis: 1.39 (low  $\Psi$ ) and 1.16 (high  $\Psi$ )

 $\Leftrightarrow$  Expect  $2 \le \gamma < 3$  (finite mean, infinite variance)

 $\clubsuit$  When  $\gamma < 1$ , can't normalize

The PoCSverse Biological Contagion 45 of 97

### Introduction

Simple disease spreading models

#### Prediction More models

Toy metapopulation



### Measured values of $\gamma$ :

 $\clubsuit$  measles: 1.40 (low  $\Psi$ ) and 1.13 (high  $\Psi$ )

 $\clubsuit$  pertussis: 1.39 (low  $\Psi$ ) and 1.16 (high  $\Psi$ )

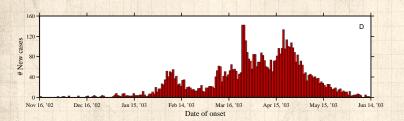
 $\Leftrightarrow$  Expect  $2 \le \gamma < 3$  (finite mean, infinite variance)

 $\clubsuit$  When  $\gamma < 1$ , can't normalize

Distribution is quite flat.

The PoCSverse Biological Contagion 45 of 97

### Introduction


Simple disease spreading models
Background

#### Prediction More models

Toy metapopulation models Model output Nutshell



# Resurgence—example of SARS



The PoCSverse Biological Contagion 46 of 97

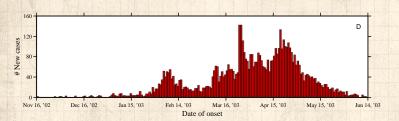
### Introduction

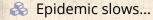
Simple disease spreading models Background

#### Prediction

More models

Toy metapopulation models


Model output


Nutshell Other kinds of

Next



# Resurgence—example of SARS





The PoCSverse Biological Contagion 46 of 97

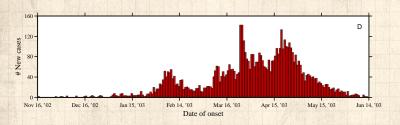
### Introduction

Simple disease spreading models

#### Prediction

More models

Toy metapopulation models


Model output

Other kinds of

Next



# Resurgence—example of SARS



Epidemic slows... then an infective moves to a new context. The PoCSverse Biological Contagion 46 of 97

### Introduction

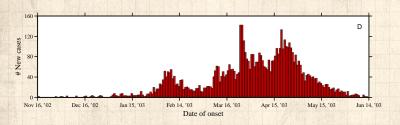
Simple disease spreading models Background

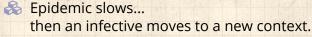
### Prediction

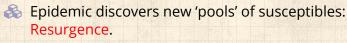
More models

Toy metapopulation models

Model output


5 (


### References


Next



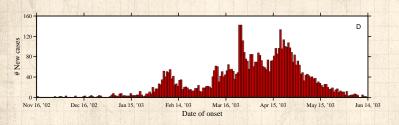
## Resurgence—example of SARS

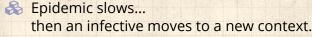


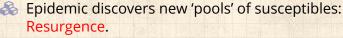




The PoCSverse Biological Contagion 46 of 97


#### Introduction


Simple disease spreading models Background Prediction More models Toy metapopulation


Toy metapopulation models Model output Nutshell Other kinds of predictio



## Resurgence—example of SARS









The PoCSverse Biological Contagion 46 of 97

#### Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation models Model output Nurshell



## Community—S2E6: Epidemiology

#### The PoCSverse Biological Contagion 47 of 97

Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of prediction Next



## Outline

### introduction

## Simple disease spreading models

Background Prediction

### More models

Toy metapopulation models Model output Nutshell Other kinds of prediction Next

References

The PoCSverse Biological Contagion 48 of 97

# Introduction

Simple disease spreading models Background

## More models Toy metapopulation

Model output

Nutshell

Other kinds of prediction

Next



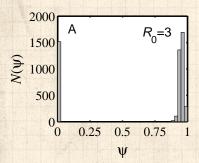
## The challenge

### So... can a simple model produce

- 1. broad epidemic distributions and
- 2. resurgence?

The PoCSverse Biological Contagion 49 of 97

## Introduction


Simple disease spreading models

Background

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of prediction



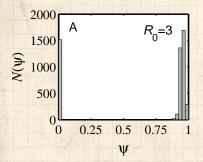


Simple models typically produce bimodal or unimodal size distributions.

The PoCSverse Biological Contagion 50 of 97

### Introduction

Simple disease spreading models Background


#### More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prodic

Next





Simple models typically produce bimodal or unimodal size distributions.

The PoCSverse Biological Contagion 50 of 97

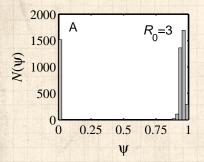
Introduction

Simple disease spreading models

Prediction

More models

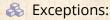
Toy metapopulation


Model output

Other kinds of predictio

References




This includes network models: random, small-world, scale-free, ...

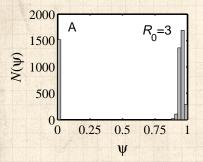


Simple models size distributions.

typically produce bimodal or unimodal

This includes network models: random, small-world, scale-free, ...




The PoCSverse Biological Contagion 50 of 97

### Introduction

Simple disease spreading models

#### More models Toy metapopulation





Simple models typically produce bimodal or unimodal size distributions.

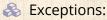
Simple disease spreading models Background Prediction

The PoCSverse

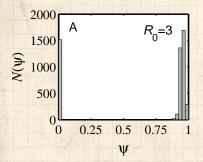
Biological Contagion 50 of 97

More models

Toy metapopulation


Model output Nutshell

Other kinds of predicti


References



This includes network models: random, small-world, scale-free, ...



1. Forest fire models

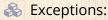


Simple models typically produce bimodal or unimodal size distributions.

Simple disease spreading models Background Prediction More models

The PoCSverse

Biological Contagion 50 of 97


Toy metapopulation models

Nutshell
Other kinds of prediction

References



This includes network models: random, small-world, scale-free, ...



- 1. Forest fire models
- 2. Sophisticated metapopulation models

Forest fire models: [19]

The PoCSverse Biological Contagion 51 of 97

#### Introduction

Simple disease spreading models Background

#### Prediction More models

Toy metapopulation models Model output Nutshell Other kinds of prediction Next

#### References



LIBERAL-ARTS HAVINS HAV BE ARROYING SOPETHES, BUT THERE'S ANTHAMO PRORE CONDINGUES THAN A PHYSICIST FRIST ENCOUNTERING A NEW SUSSECT.

Forest fire models: [19]



Rhodes & Anderson, 1996

The PoCSverse Biological Contagion 51 of 97

#### Introduction

Simple disease spreading models

More models

# Toy metapopulation

Next

References



LIBERAL-ARTS PHOSES HAY BE ARROYING SOFETHES, BUT THERES AND AND MORE CONDINOUS THAN A PHYSICST FIRST ENCOUNTRING A ROLL SUSSECT

### Forest fire models: [19]



Rhodes & Anderson, 1996



The physicist's approach:

"if it works for magnets, it'll work for people..."

The PoCSverse Biological Contagion 51 of 97

#### Introduction

Simple disease spreading models

#### More models Toy metapopulation



### Forest fire models: [19]



Rhodes & Anderson, 1996



The physicist's approach:

"if it works for magnets, it'll work for people..."

### A bit of a stretch:

The PoCSverse Biological Contagion 51 of 97

#### Introduction

Simple disease spreading models

### More models

Toy metapopulation

#### References



THERE'S AUTHANO MORE CONOXIOUS THA INSICISE FIRST ENCOUNTERING A NEW SUBSEC

### Forest fire models: [19]



Rhodes & Anderson, 1996



The physicist's approach:

"if it works for magnets, it'll work for people..."

### A bit of a stretch:

1. Epidemics  $\equiv$  forest fires spreading on 3-d and 5-d lattices. The PoCSverse Biological Contagion 51 of 97

#### Introduction

Simple disease spreading models

### More models

Toy metapopulation

References



CRES ARTHANG MORE CONDITIONS THAT

### Forest fire models: [19]

- & Rhodes & Anderson, 1996
- The physicist's approach: "if it works for magnets, it'll work for people..."

### A bit of a stretch:

- Epidemics 

   = forest fires
   spreading on 3-d and 5-d lattices.
- 2. Claim Iceland and Faroe Islands exhibit power law distributions for outbreaks.

The PoCSverse Biological Contagion 51 of 97

#### Introduc

Simple disease spreading models Background

### More models

Toy metapopulation models Model output Nutshell Other kinds of predictio



### Forest fire models: [19]

- Rhodes & Anderson, 1996
- The physicist's approach: "if it works for magnets, it'll work for people..."

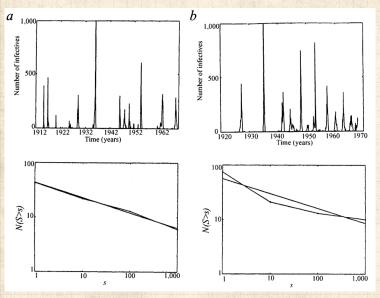
### A bit of a stretch:

- Epidemics 

   = forest fires
   spreading on 3-d and 5-d lattices.
- 2. Claim Iceland and Faroe Islands exhibit power law distributions for outbreaks.
- 3. Original forest fire model not completely understood.

The PoCSverse Biological Contagion 51 of 97

#### Introduc


Simple disease spreading models

Background

### More models Toy metapopulati

Toy metapopulation models Model output Nutshell Other kinds of prediction





The PoCSverse Biological Contagion 52 of 97

Introduction

Simple disease spreading models

Background Prediction

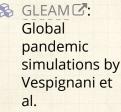
More models

Toy metapopulation

Model output Nutshell

References

Next




From Rhodes and Anderson, 1996.

# Sophisticated metapopulation models:

- Multiscale models suggested earlier by others but not formalized (Bailey [1], Cliff and Haggett [6], Ferguson et al.)
- Community based mixing (two scales)—Longini. [17]
- Eubank et al.'s EpiSims/TRANSIMS city simulations. [9]
- Spreading through countries—Airlines: Germann et al., Colizza et al. [7]





The PoCSverse Biological Contagion 53 of 97

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation models

Model output

Other kinds of predic Next





"The hidden geometry of complex, network-driven contagion phenomena" Brockmann and Helbing, Science, **342**, 1337–1342, 2013. [5]

The PoCSverse Biological Contagion 54 of 97

Introduction

Simple disease spreading models Background

More models

Toy metapopulation models

Model output

Other kinds of predic



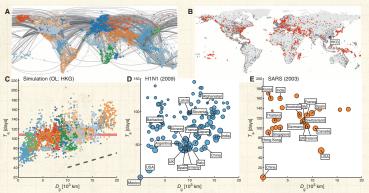



Fig. 1. Complexity in global, network-driven contagion phenomena. (A) The global mobility newhox (GMM), Gryl lines represent passenger flows along direct connections between 4069 airports worldwide. Geographic regions are distinguished by color (classified according to network modularly maximization (39)). (B) Temporal snapshot of a simulated global pandemic with initial outbreak location (OU in Hong Kong MKG). The simulation is based on the metapopulation model defined by Eq. 3 with parameters  $R_0=1.5$  p. -0.285 day.  $^{2}_{1}$   $\sim 2.85$  at  $10^{2}$  day?  $^{2}_{1}$   $\approx 10^{2}$  He Gay mbols depict locations with epidemic arrival times in the time windows 105 days  $c_{1}^{2}<1210$  days, Because of the multiscale structure of the underlying network, the spatial distribution of disease prevalence (i.e., the fraction of intected individuals) lacks geometric coherence. No clear wavefront is visible, and based on this dynamic state, the OL cannot be easily deduced. (OF or the same simulation as in (B)) for each given the control of geographic distance  $D_{\theta}$  from the OL floodes are colored according to exequablic regions in (A)) for each of the 4069 nodes in the network. On a

global scale,  $T_s$  weakly correlates with geographic distance  $D_s$  ( $F^2 = 0.34$ ), times of the jeths an average global spreading greed of  $y_s = 331$  km/dsy code lab ling, 571. Using  $D_s$  and  $v_s$  to estimate arrival times for specific locations, however, does not work well owing to the strong variability of the arrival time for a given geographic distance. The red horizontal bar corresponds to the arrival time window shown in (3). (D) Arrival times versus geographic distance from the source (Meckol for the 2009 HM1) pandenic. Symbols represent 140 affected countries, and symbol size quantifies total traffic per country. Arrival times are defined as the date of the first confirmed case in a given country after the initial outbreak on 1.7 March 2009. As in the simulated scenario, arrival time and geographic distance are only weakly correlated  $F^2$  = 0.0394, (E) In analogy to (D), the panel depicts the arrival times versus geographic distance from the source (China) of the 2003 SARS epidemic for 29 affected countries worldwide. Arrival times are taken from WHO published data (2). As in (C) and (D), arrival time correlates weakly with geographic distance.

#### The PoCSverse Biological Contagion 55 of 97

### Introduction

Simple disease spreading models Background

#### More models

Toy metapopulation models Model output Nutshell Other kinds of prediction



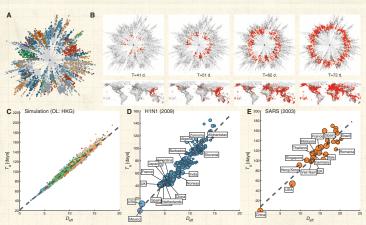



Fig. 2. Understanding global contagion phenomena using effective distance. (A) He structure of the shortest path tree in gray from Hong Kong (central node). Radial distance represents effective distance  $D_{ijk}$  and self-model yets and S. Mose are colored according to the same scheme as in Fig. 1A. (8). The sequence (from left to right) of panels depicts the time course of a simulated model disease with initial outbreak in Hong Kong (MicK), for the same parameter set a used in Fig. 1B. Prevalence is reflected by the redness of the symbols. Each past compares the state of the system in the conventional geographic representation (top). The complex spatial pattern in the conventional (eve) sequivalent to a homogeneous parameter of the properties of the symbols.

neous wave that propagates outwards at constant effective speed in the effective distance representation, (C) Epidemic airval time  $T_2$ , versus effective distance  $D_{\rm unf}$  for the same simulated epidemic as in (B). In contrast to geographic distance  $D_{\rm unf}$  for the same simulated epidemic as in (B). In contrast to geographic distance, (B), effective distance is an excellent predictor of arrival times, (D) and (B) Linear relationship between effective distance and arrival time for the (D) of (B) Hall pandemic (D) and the (D) SAMS epidemic (D). The arrival time data are the operation of (D) and (D) is the (D) and (D) and (D) and (D) and (D) and (D) is the (D) and (D) and (D) are districted distance was computed from the opposite of (D) and (D). The effective distance was computed from the observe a strong correlation between arrival time and effective distance was defective distance.

#### The PoCSverse Biological Contagion 56 of 97

### Introduction

Simple disease spreading models Background

#### More models

Toy metapopulation models Model output Nutshell Other kinds of predictio Next



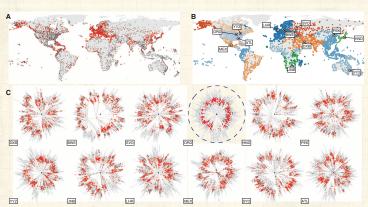



Fig. 3. Qualitative outbreak reconstruction based on effective distance. (A) Spatial distribution of prevalence  $\beta/0$  at time f=81 days for Ot. Chicago (parameters  $\beta=0.28$  day $^{-2}$ ,  $R_0=1.9$ ,  $\gamma=2.8\times 10^{-3}$  day $^{-3}$ , and  $\epsilon=10^{-9}$ . After this time, its difficult, if not impossible, to determine the correct Ot from snapshots of the dynamics. (B) Candidate OLs chosen from different geographic regions. (C) Panels depict the state of the system shown in (A) from the

perspective of each candidate OL, using each OL's shortest path tree representation. Only the actual OL (ORD, circled in blue) produces a circular wavefront. Even for comparable North American airports (Matina AUT), foronto (YVZ), and Mexico Gity (MEOL), the wavefronts are not nearly as concentric. Effective distances thus permit the extraction of the correct OL, based on information on the mobility network and a single snapshot of the dynamics.

#### The PoCSverse Biological Contagion 57 of 97

### Introduction

Simple disease spreading models Background

Prediction

### More models Toy metapopulation

Model output

Other kinds of prediction



## Community—S2E6: Epidemiology

The PoCSverse Biological Contagion 58 of 97

Introduction

Simple disease spreading models
Background

Prediction

More models

Toy metapopulation models Model output Nutshell Other kinds of prediction Next





Vital work but perhaps hard to generalize from...

The PoCSverse Biological Contagion 59 of 97

## Introduction

Simple disease spreading models Background

#### More models Toy metapopulation

Model output Other kinds of prediction Next





Vital work but perhaps hard to generalize from...



♣ ⇒ Create a simple model involving multiscale travel

The PoCSverse Biological Contagion 59 of 97

## Introduction

Simple disease spreading models Background

#### More models Toy metapopulation

Model output

References

Next





Vital work but perhaps hard to generalize from...



♣ ⇒ Create a simple model involving multiscale travel



The PoCSverse Biological Contagion 59 of 97 Introduction

Simple disease spreading models

#### More models Toy metapopulation





Vital work but perhaps hard to generalize from...



♣ ⇒ Create a simple model involving multiscale travel



Very big question: What is N?



Should we model SARS in Hong Kong as spreading in a neighborhood, in Hong Kong, Asia, or the world?

The PoCSverse Biological Contagion 59 of 97

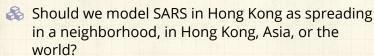
### Introduction

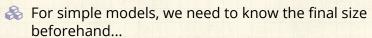
Simple disease spreading models

#### More models Toy metapopulation






Vital work but perhaps hard to generalize from...




♣ ⇒ Create a simple model involving multiscale travel



Very big question: What is N?





The PoCSverse Biological Contagion 59 of 97

Simple disease spreading models

#### More models Toy metapopulation



## Outline

### introduction

### Simple disease spreading models

Background Prediction More models

### Toy metapopulation models

Model output
Nutshell
Other kinds of prediction
Next

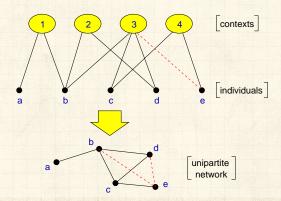
References

The PoCSverse Biological Contagion 60 of 97

Simple disease spreading models

Prediction

More models


### Toy metapopulation models

Model output

Other kinds of prediction



## Contexts and Identities—Bipartite networks



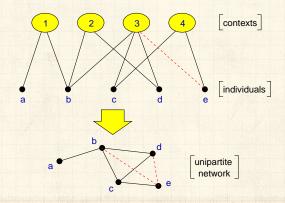
The PoCSverse Biological Contagion 61 of 97

### Introduction

Simple disease spreading models Background

Prediction

More models


Toy metapopulation models

Model output
Nutshell
Other kinds of prediction

Next References



### Contexts and Identities—Bipartite networks



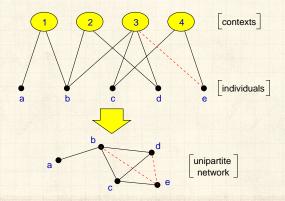


boards of directors

The PoCSverse Biological Contagion 61 of 97

#### Introduction

Simple disease spreading models Background


More models

Toy metapopulation models

Model output



## Contexts and Identities—Bipartite networks





boards of directors

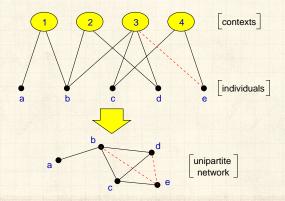


The PoCSverse Biological Contagion 61 of 97

Introduction

Simple disease spreading models

Background


More models

Toy metapopulation models

Model output



## Contexts and Identities—Bipartite networks





boards of directors



movies



transportation modes (subway)

The PoCSverse Biological Contagion 61 of 97

Introduction

Simple disease spreading models

More models

Toy metapopulation models

Model output



Idea for social networks: incorporate identity

The PoCSverse Biological Contagion 62 of 97

Introduction

Simple disease spreading models

Background

Prediction

More models

Toy metapopulation models

Model output Nutshell

Next



Idea for social networks: incorporate identity

Identity is formed from attributes such as:

The PoCSverse Biological Contagion 62 of 97

Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation models

Model output

Nutshell

Other kinds of prediction

References

Next



Idea for social networks: incorporate identity

Identity is formed from attributes such as:



Geographic location

The PoCSverse Biological Contagion 62 of 97

Introduction

Simple disease spreading models

More models

Toy metapopulation models

Model output



Idea for social networks: incorporate identity

## Identity is formed from attributes such as:



Geographic location



Type of employment

The PoCSverse Biological Contagion 62 of 97

Introduction

Simple disease spreading models

More models

Toy metapopulation models

Model output



Idea for social networks: incorporate identity

# Identity is formed from attributes such as:

Geographic location

Type of employment

🚓 Age

The PoCSverse Biological Contagion 62 of 97

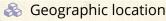
Introduction

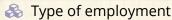
Simple disease spreading models Background

Prediction More models

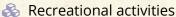
Toy metapopulation models

Model output


Nutshell


Other kinds of predictio




Idea for social networks: incorporate identity

## Identity is formed from attributes such as:









The PoCSverse Biological Contagion 62 of 97

Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction

Next



Idea for social networks: incorporate identity

# Identity is formed from attributes such as:

Geographic location

Type of employment

<page-header> Age

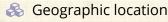
Recreational activities

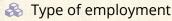
Groups are crucial...

The PoCSverse Biological Contagion 62 of 97

### Introduction

Simple disease spreading models Background Prediction


### Toy metapopulation models


Model output
Nutshell
Other kinds of prediction



Idea for social networks: incorporate identity

# Identity is formed from attributes such as:





备 Age

Recreational activities

### Groups are crucial...

formed by people with at least one similar attribute

The PoCSverse Biological Contagion 62 of 97

Introduction

Simple disease spreading models Background

Toy metapopulation models

Model output

Nutshell

Other kinds of prediction



Idea for social networks: incorporate identity

# Identity is formed from attributes such as:

- Geographic location
- Type of employment
- 备 Age
- Recreational activities

### Groups are crucial...

- formed by people with at least one similar attribute
- Attributes 

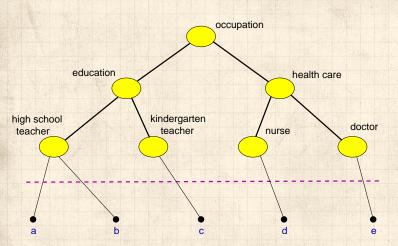
  ⇔ Contexts 

  ⇔ Interactions 

  ⇔ Networks. [23]

The PoCSverse Biological Contagion 62 of 97

Introduction


Simple disease spreading models Background Prediction

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction



### Infer interactions/network from identities



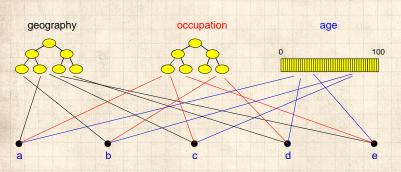
Distance makes sense in identity/context space.

The PoCSverse Biological Contagion 63 of 97

#### Introduction

Simple disease spreading models

Prediction More models


Toy metapopulation

Model output Nutshell

Other kinds of prediction



# Generalized context space



(Blau & Schwartz [3], Simmel [20], Breiger [4])

The PoCSverse Biological Contagion 64 of 97

### Introduction

Simple disease spreading models

Prediction

More models

### Toy metapopulation models

Model output

Other kinds of prediction





"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162, 2005. [24]

Geography: allow people to move between contexts

The PoCSverse Biological Contagion 65 of 97

Simple disease spreading models

Prediction

More models

Toy metapopulation models

Model output

Other kinds of prediction





"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162, 2005. [24]

# Geography: allow people to move between contexts

& Locally: standard SIR model with random mixing

The PoCSverse Biological Contagion 65 of 97

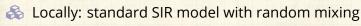
Simple disease spreading models

Prediction

More models

Toy metapopulation models

Model output Nutshell


Other kinds of prediction Next





"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., 102, 11157-11162, 2005. [24]

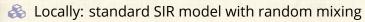
### Geography: allow people to move between contexts





The PoCSverse Biological Contagion 65 of 97

Simple disease spreading models


### Toy metapopulation





"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162, 2005. [24]

# Geography: allow people to move between contexts



discrete time simulation

 $\beta$  = infection probability

The PoCSverse Biological Contagion 65 of 97

6: 1 "

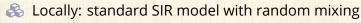
Simple disease spreading models

Prediction More models

More models

Toy metapopulation

models Model output


Nutshell
Other kinds of prediction
Next





"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., 102, 11157-11162, 2005. [24]

### Geography: allow people to move between contexts

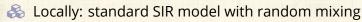


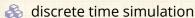
discrete time simulation

 $\beta$  = infection probability

The PoCSverse Biological Contagion 65 of 97

Simple disease spreading models


Toy metapopulation






"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162, 2005. [24]

# Geography: allow people to move between contexts





 $\beta$  = infection probability

P = P probability of travel

The PoCSverse Biological Contagion 65 of 97

Introducti

Simple disease spreading models

Prediction

More models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next





"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162, 2005. [24]

# Geography: allow people to move between contexts

- & Locally: standard SIR model with random mixing
- & discrete time simulation
- $\beta$  = infection probability
- P = probability of travel
- № Movement distance:  $Pr(d) \propto exp(-d/ξ)$

The PoCSverse Biological Contagion 65 of 97

Introducti

Simple disease spreading models Background

Prediction More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction





"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162, 2005. [24]

# Geography: allow people to move between contexts

- & Locally: standard SIR model with random mixing
- discrete time simulation
- $\beta$  = infection probability
- P = probability of travel
- **Movement distance:**  $Pr(d) \propto exp(-d/\xi)$
- &  $\xi$  = typical travel distance

The PoCSverse Biological Contagion 65 of 97

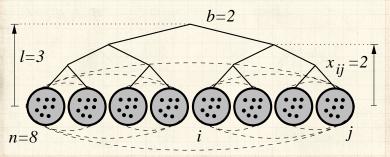
Introductio

Simple disease spreading models

Background

Prediction More models

More models


Toy metapopulation

models

Nutshell
Other kinds of prediction



### Schematic:



The PoCSverse Biological Contagion 66 of 97

### Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction

Next



# Outline

### introduction

### Simple disease spreading models

Background
Prediction
More models
Toy metapopulation models

### Model output

Nutshell
Other kinds of prediction
Next

Reference

The PoCSverse Biological Contagion 67 of 97

### Introduction

Simple disease spreading models

Background

Backgroun Prediction

More models

Toy metapopulation

Model output

Next

Nutshell
Other kinds of prediction

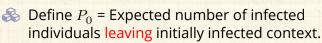


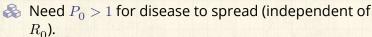


 Define  $P_0 =$  Expected number of infected individuals leaving initially infected context. The PoCSverse Biological Contagion 68 of 97

# Introduction

Simple disease spreading models


Background


More models Toy metapopulation

#### Model output

Next







The PoCSverse Biological Contagion 68 of 97

#### introduction

Simple disease spreading models

Backgroun Prediction

More models

Toy metapopulation

#### Model output

Other kinds of prediction



- Define  $P_0$  = Expected number of infected individuals leaving initially infected context.
- Need  $P_0 > 1$  for disease to spread (independent of  $R_0$ ).
- Limit epidemic size by restricting frequency of travel and/or range

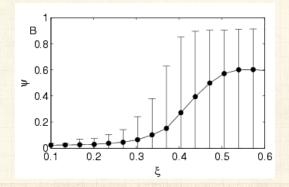
The PoCSverse Biological Contagion 68 of 97

### Introduction

Simple disease spreading models

Prediction

More models


Toy metapopulation

Model output

Other kinds of prediction



### Varying $\xi$ :





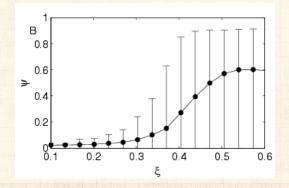
Transition in expected final size based on typical movement distance

The PoCSverse Biological Contagion 69 of 97

### Introduction

Simple disease spreading models

Background


More models Toy metapopulation

Model output

Other kinds of prediction Next



### Varying $\xi$ :





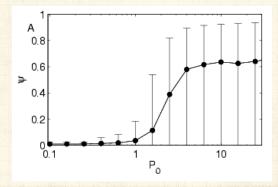
Transition in expected final size based on typical movement distance (sensible)

The PoCSverse Biological Contagion 69 of 97

### Introduction

Simple disease spreading models

Background


More models Toy metapopulation

Model output

Other kinds of prediction



# Varying $P_0$ :



Transition in expected final size based on typical number of infectives leaving first group The PoCSverse Biological Contagion 70 of 97

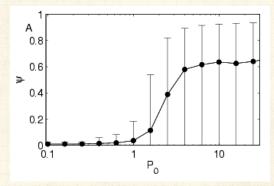
### Introduction

Simple disease spreading models

Background

Prediction

More models


Toy metapopulation

Model output Nutshell

Next



# Varying $P_0$ :



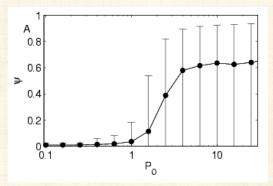
Transition in expected final size based on typical number of infectives leaving first group (also sensible) The PoCSverse Biological Contagion 70 of 97

### Introduction

Simple disease spreading models

Prediction

More models


Toy metapopulation models

Model output Nutshell

Next



# Varying $P_0$ :



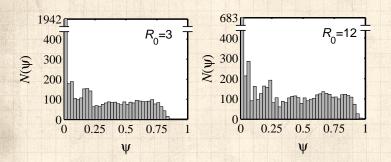
Transition in expected final size based on typical number of infectives leaving first group (also sensible)



 $\clubsuit$  Travel advisories:  $\xi$  has larger effect than  $P_0$ .

The PoCSverse Biological Contagion 70 of 97

Introduction


Simple disease spreading models Background

More models

Toy metapopulation

Model output



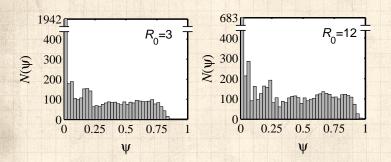


The PoCSverse Biological Contagion 71 of 97

### Introduction

Simple disease spreading models

Background Prediction


More models

Toy metapopulation

#### Model output

Nutshell
Other kinds of prediction
Next



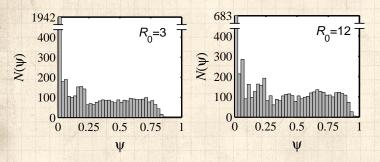


The PoCSverse Biological Contagion 71 of 97

### Introduction

Simple disease spreading models

Background Prediction


More models

Toy metapopulation

#### Model output

Nutshell
Other kinds of prediction
Next





 ${\it \$}$  Flat distributions are possible for certain  $\xi$  and P.

The PoCSverse Biological Contagion 71 of 97

### Introduction

Simple disease spreading models

Background Prediction


More models

Toy metapopulation

#### Model output

Other kinds of prediction





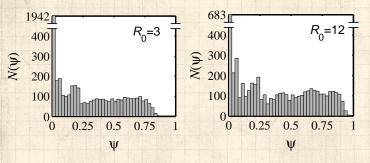
Flat distributions are possible for certain  $\xi$  and P.



 $\mathbb{A}$  Different  $R_0$ 's may produce similar distributions

The PoCSverse Biological Contagion 71 of 97

### Introduction


Simple disease spreading models Background

More models

Toy metapopulation

#### Model output





8

Flat distributions are possible for certain  $\xi$  and P.



Different  $R_0$ 's may produce similar distributions



Same epidemic sizes may arise from different  $R_0$ 's

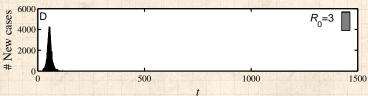
The PoCSverse Biological Contagion 71 of 97

### Introduction

Simple disease spreading models

Prediction

Toy metapopulation


#### Model output

Other kinds of prediction



# Model output—resurgence

### Standard model:



The PoCSverse Biological Contagion 72 of 97

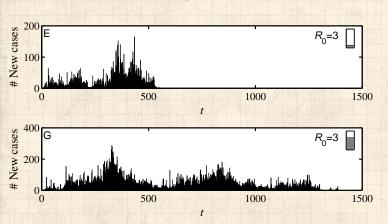
### Introduction

# Simple disease spreading models

Background Prediction

More models

Toy metapopulation


#### Model output

Nutshell Other kinds of predi Next



# Model output—resurgence

### Standard model with transport:



The PoCSverse Biological Contagion 73 of 97

### Introduction

# Simple disease spreading models

Background

More models

Toy metapopulation

#### Model output

Nutshell Other kinds of pre

References

Next



# The upshot

Simple multiscale population structure

#### The PoCSverse Biological Contagion 74 of 97

# Introduction

# Simple disease spreading models

Background

Prediction

More models

Toy metapopulation models

#### Model output

Nutshell

References

Next



# The upshot

Simple multiscale population structure + stochasticity

The PoCSverse Biological Contagion 74 of 97

# Introduction Simple disease

### spreading models

Background Prediction

More models

Toy metapopulation models

#### Model output

Nutshe

Other kinds of prediction Next



## The upshot

Simple multiscale population structure + stochasticity

leads to

resurgence

+

broad epidemic size distributions

The PoCSverse Biological Contagion 74 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation

Model output

Other kinds of prediction



## Outline

#### Introduction

### Simple disease spreading models

Background
Prediction
More models
Toy metapopulation models
Model output

#### Nutshell

Other kinds of prediction Next

References

The PoCSverse Biological Contagion 75 of 97

#### Introduction

Simple disease spreading models

Background

Prediction Prediction

More models

Toy metapopulation

Model output

#### Nutshell

Other kinds of prediction
Next





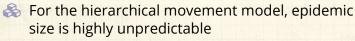
For the hierarchical movement model, epidemic size is highly unpredictable

The PoCSverse Biological Contagion 76 of 97

Introduction

Simple disease spreading models

Background


More models

Toy metapopulation

Model output Nutshell

Next





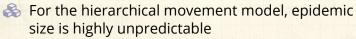
Model is more complicated than SIR but still simple.

The PoCSverse Biological Contagion 76 of 97

Introduction

Simple disease spreading models

Background


More models

Toy metapopulation

Model output

Nutshell
Other kinds of predicti





Model is more complicated than SIR but still simple.

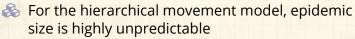
We haven't even included normal social responses such as travel bans and self-quarantine. The PoCSverse Biological Contagion 76 of 97

Introduction

Simple disease spreading models

Background

More model


Toy metapopulation

lodel output

Nutshell

Other kinds of prediction Next





Model is more complicated than SIR but still simple.

We haven't even included normal social responses such as travel bans and self-quarantine.

 $\clubsuit$  The reproduction number  $R_0$  is not terribly useful.

The PoCSverse Biological Contagion 76 of 97

Introduction

Simple disease spreading models

Toy metapopulation

Nutshell



- For the hierarchical movement model, epidemic size is highly unpredictable
- Model is more complicated than SIR but still simple.
- We haven't even included normal social responses such as travel bans and self-quarantine.
- $\clubsuit$  The reproduction number  $R_0$  is not terribly useful.
- $R_0$ , however measured, is not informative about

The PoCSverse Biological Contagion 76 of 97

Introduction

Simple disease spreading models

Toy metapopulation

Nutshell



- For the hierarchical movement model, epidemic size is highly unpredictable
- Model is more complicated than SIR but still simple.
- We haven't even included normal social responses such as travel bans and self-quarantine.
- $\clubsuit$  The reproduction number  $R_0$  is not terribly useful.
- $R_0$ , however measured, is not informative about
  - 1. how likely the observed epidemic size was,

The PoCSverse Biological Contagion 76 of 97

Simple disease spreading models

Toy metapopulation

Nutshell



- For the hierarchical movement model, epidemic size is highly unpredictable
- Model is more complicated than SIR but still simple.
- We haven't even included normal social responses such as travel bans and self-quarantine.
- $\clubsuit$  The reproduction number  $R_0$  is not terribly useful.
- $R_0$ , however measured, is not informative about
  - 1. how likely the observed epidemic size was,
  - 2. and how likely future epidemics will be.

The PoCSverse Biological Contagion 76 of 97

Simple disease spreading models

Toy metapopulation

Nutshell



- For the hierarchical movement model, epidemic size is highly unpredictable
- Model is more complicated than SIR but still simple.
- We haven't even included normal social responses such as travel bans and self-quarantine.
- $\clubsuit$  The reproduction number  $R_0$  is not terribly useful.
- $R_0$ , however measured, is not informative about
  - 1. how likely the observed epidemic size was,
  - 2. and how likely future epidemics will be.
- $\ref{eq:constraints}$  Problem:  $R_0$  summarises one epidemic after the fact and enfolds movement, the price of bananas, everything.

The PoCSverse Biological Contagion 76 of 97

Introduction

Simple disease spreading models

Prediction

Toy metapopulation models

lodel output

Nutshell
Other kinds of prediction





Disease's spread is highly sensitive to population structure.

The PoCSverse Biological Contagion 77 of 97

## Introduction

Simple disease spreading models

Background

More models Toy metapopulation

Model output

#### Nutshell

Next



Disease's spread is highly sensitive to population structure.

Rare events may matter enormously:

The PoCSverse Biological Contagion 77 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models

Model output

Nutshell
Other kinds of predict

Next



Disease's spread is highly sensitive to population structure.

Rare events may matter enormously: e.g., an infected individual taking an international flight.

The PoCSverse Biological Contagion 77 of 97

Simple disease spreading models

Prediction Prediction

More models

Toy metapopulation

Model output

Nutshell
Other kinds of prediction



- Disease's spread is highly sensitive to population structure.
- Rare events may matter enormously: e.g., an infected individual taking an international flight.
- More support for controlling population movement:

The PoCSverse Biological Contagion 77 of 97

Introduction

Simple disease spreading models

Prediction

Toy metapopulation

Nodel output

Nutshell
Other kinds of prediction



- Disease's spread is highly sensitive to population structure.
- Rare events may matter enormously: e.g., an infected individual taking an international flight.
- More support for controlling population movement:
  a.g. travel advisories guaranting

e.g., travel advisories, quarantine

The PoCSverse Biological Contagion 77 of 97

me oddecion

Simple disease spreading models

Prediction

Toy metapopulation models

Model output

Nutshell

Other kinds of prediction Next



What to do:

The PoCSverse Biological Contagion 78 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next



#### What to do:



Need to separate movement from disease

The PoCSverse Biological Contagion 78 of 97

Introduction

Simple disease spreading models

Background

More models Toy metapopulation

Model output

Nutshell

References

Next



#### What to do:

Need to separate movement from disease

 $\Re R_0$  needs a friend or two.

The PoCSverse Biological Contagion 78 of 97

## Introduction

Simple disease spreading models

Background

More models

Toy metapopulation

Model output Nutshell

Next



#### What to do:



Need to separate movement from disease



 $\Re R_0$  needs a friend or two.



 $\Re$  Need  $R_0 > 1$  and  $P_0 > 1$  and  $\xi$  sufficiently large for disease to have a chance of spreading

The PoCSverse Biological Contagion 78 of 97

## Introduction

Simple disease spreading models

More models

Toy metapopulation

#### Nutshell



#### What to do:

- Need to separate movement from disease
- $\Re R_0$  needs a friend or two.
- $\mathbb{R}$  Need  $R_0 > 1$  and  $P_0 > 1$  and  $\xi$  sufficiently large for disease to have a chance of spreading
- 🚓 And in general: keep building up the kitchen sink models.

The PoCSverse Biological Contagion 78 of 97

Introduction

Simple disease spreading models

More models Toy metapopulation

Nutshell



#### What to do:

- Need to separate movement from disease
- $\Re R_0$  needs a friend or two.
- $lap{Need} R_0 > 1 ext{ and } P_0 > 1 ext{ and } \xi ext{ sufficiently large for disease to have a chance of spreading}$
- And in general: keep building up the kitchen sink models.

More wondering:

The PoCSverse Biological Contagion 78 of 97

Simple disease spreading models

Background Prediction

Toy metapopulation models

Model output

Nutshell
Other kinds of prediction



#### What to do:

Need to separate movement from disease

 $R_0$  needs a friend or two.

 $lap{Need} R_0 > 1 \ {\rm and} \ P_0 > 1 \ {\rm and} \ \xi \ {\rm sufficiently \ large} \ {\rm for \ disease \ to \ have \ a \ chance \ of \ spreading}$ 

And in general: keep building up the kitchen sink models.

### More wondering:

Exactly how important are rare events in disease spreading?

The PoCSverse Biological Contagion 78 of 97

with oddethorr

Simple disease spreading models

Prediction

Toy metapopulation models

Model output Nutshell

Other kinds of prediction



#### What to do:

Need to separate movement from disease

 $R_0$  needs a friend or two.

Need  $R_0>1$  and  $P_0>1$  and  $\xi$  sufficiently large for disease to have a chance of spreading

And in general: keep building up the kitchen sink models.

#### More wondering:

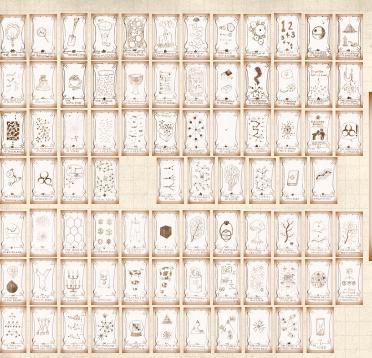
Exactly how important are rare events in disease spreading?

 $\clubsuit$  Again, what is N?

The PoCSverse Biological Contagion 78 of 97

inti oddection

Simple disease spreading models


Prediction

Toy metapopulation models

Nodel output

Nutshell
Other kinds of prediction







### Outline

### Simple disease spreading models

Other kinds of prediction

The PoCSverse Biological Contagion 80 of 97

#### Introduction

Simple disease spreading models Background

More models Toy metapopulation

Model output

Other kinds of prediction







The PoCSverse Biological Contagion 81 of 97

Introduction

Simple disease spreading models Background

Prediction More models

Toy metapopulation models Model output Nutshell

Other kinds of prediction



"The growth of the Internet will slow drastically, as the flaw in "Metcalfe's law"—



The PoCSverse Biological Contagion 81 of 97

Introduction

Simple disease spreading models

Background

Prediction More models

Toy metapopulation models

Model output Nutshell

Other kinds of prediction Next





"The growth of the Internet will slow drastically, as the flaw in "Metcalfe's law"—which states that the number of potential connections in a network is proportional to the square of the number of participantsThe PoCSverse Biological Contagion 81 of 97

Introduction

Simple disease spreading models Background Prediction More models

Model output Nutshell Other kinds of prediction





"The growth of the Internet will slow drastically, as the flaw in "Metcalfe's law"—which states that the number of potential connections in a network is proportional to the square of the number of participants—becomes apparent:

The PoCSverse Biological Contagion 81 of 97

Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation

Model output Nutshell Other kinds of prediction





"The growth of the Internet will slow drastically, as the flaw in "Metcalfe's law"—which states that the number of potential connections in a network is proportional to the square of the number of participants—becomes apparent: most people have nothing to say to each other!

The PoCSverse Biological Contagion 81 of 97

#### Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation models

Nutshell
Other kinds of prediction





"The growth of the Internet will slow drastically, as the flaw in "Metcalfe's law"—which states that the number of potential connections in a network is proportional to the square of the number of participants—becomes apparent: most people have nothing to say to each other! By 2005 or so, it will become clear that the Internet's impact on the economy has been no greater than the fax machine's."1

The PoCSverse Biological Contagion 81 of 97

Introduction
Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction





"The growth of the Internet will slow drastically, as the flaw in "Metcalfe's law"—which states that the number of potential connections in a network is proportional to the square of the number of participants—becomes apparent: most people have nothing to say to each other! By 2005 or so, it will become clear that the Internet's impact on the economy has been no greater than the fax machine's."1

The PoCSverse Biological Contagion 81 of 97

Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation models Model output

Other kinds of prediction



¹http://www.redherring.com/mag/issue55/economics.html ☑

Alan Greenspan (September 18, 2007):



http://wikipedia.org

The PoCSverse Biological Contagion 82 of 97

Introduction

Simple disease spreading models

Prediction More models

Toy metapopulation models Model output

Other kinds of prediction



### Alan Greenspan (September 18, 2007):

"I've been dealing with these big mathematical models of forecasting the economy ...



http://wikipedia.org

The PoCSverse Biological Contagion 82 of 97

#### Introduction

Simple disease spreading models

Background

More models
Toy metapopulation

Nodel output

Other kinds of prediction Next



### Alan Greenspan (September 18, 2007):

"I've been dealing with these big mathematical models of forecasting the economy ...

If I could figure out a way to determine whether or not people are more fearful or changing to more euphoric,



http://wikipedia.org

The PoCSverse Biological Contagion 82 of 97

#### Introduction

Simple disease spreading models

Toy metapopulation

Other kinds of prediction



### Alan Greenspan (September 18, 2007):

"I've been dealing with these big mathematical models of forecasting the economy ...

If I could figure out a way to determine whether or not people are more fearful or changing to more euphoric, I don't need any of this other stuff.



http://wikipedia.org

The PoCSverse Biological Contagion 82 of 97

#### Introduction

Simple disease spreading models Background Prediction

Toy metapopulation models Model output Nutshell Other kinds of prediction



# Alan Greenspan (September 18, 2007):

"I've been dealing with these big mathematical models of forecasting the economy ...

If I could figure out a way to determine whether or not people are more fearful or changing to more euphoric,

I don't need any of this other stuff.

I could forecast the economy better than any way I know."



http://wikipedia.org

The PoCSverse Biological Contagion 82 of 97

#### Introduction

Simple disease spreading models Background Prediction

Toy metapopulation models Model output Nutshell Other kinds of prediction



# Economics, Schmeconomics Greenspan continues:

The PoCSverse Biological Contagion 83 of 97

Introduction

Simple disease spreading models

Background Prediction More models

Toy metapopulation models Model output

Nutshell
Other kinds of prediction

References

Next



# Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years.

The PoCSverse Biological Contagion 83 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models Model output

Nutshell
Other kinds of prediction



# Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, The PoCSverse Biological Contagion 83 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models

Nutshell Other kinds of prediction



# Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is.

The PoCSverse Biological Contagion 83 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation

Model output

Other kinds of prediction Next



# Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. The PoCSverse Biological Contagion 83 of 97

Introduction

Simple disease spreading models

Prediction More model

Toy metapopulation

Nodel output | > |

Other kinds of prediction Next



# Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. And the reason is that human nature hasn't changed.

The PoCSverse Biological Contagion 83 of 97

Introduction

Simple disease spreading models

Prediction

Toy metapopulation

Model output

Other kinds of prediction



# Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. And the reason is that human nature hasn't changed. We can't improve ourselves."

The PoCSverse Biological Contagion 83 of 97

Introduction

Simple disease spreading models Background

Prediction More model

Toy metapopulation

Model output

Other kinds of prediction



### Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. And the reason is that human nature hasn't changed. We can't improve ourselves."

Jon Stewart:

"You just bummed the @\*!# out of me."

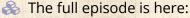


wildbluffmedia.com

The PoCSverse Biological Contagion 83 of 97

Introdu

Simple disease spreading models Background


More models

Toy metapopulation

Model output Nutshell

Other kinds of prediction Next

References



http://www.cc.com/video-clips/cenrt5/the-daily-show-with-jon-ste

"Greenspan Concedes Error on Regulation"

The PoCSverse Biological Contagion 84 of 97

Simple disease spreading models Background

More models

Toy metapopulation models

Model output

Other kinds of prediction



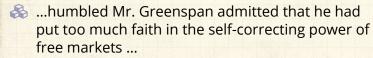
"Greenspan Concedes Error on Regulation"

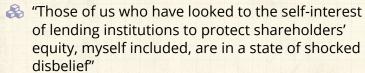


🚵 ...humbled Mr. Greenspan admitted that he had put too much faith in the self-correcting power of free markets ...

The PoCSverse Biological Contagion 84 of 97 Introduction

Simple disease


spreading models


Toy metapopulation

Other kinds of prediction



# "Greenspan Concedes Error on Regulation"





The PoCSverse Biological Contagion 84 of 97

Introduction

Simple disease spreading models

Prediction

Toy metapopulation models

Nutshell
Other kinds of prediction



# "Greenspan Concedes Error on Regulation"

- ...humbled Mr. Greenspan admitted that he had put too much faith in the self-correcting power of free markets ...
- "Those of us who have looked to the self-interest of lending institutions to protect shareholders' equity, myself included, are in a state of shocked disbelief"
- Rep. Henry A. Waxman: "Do you feel that your ideology pushed you to make decisions that you wish you had not made?"

The PoCSverse Biological Contagion 84 of 97

Introduction

Simple disease spreading models Background

Prediction

Toy metapopulation models

Nutshell
Other kinds of prediction



# "Greenspan Concedes Error on Regulation"

- ...humbled Mr. Greenspan admitted that he had put too much faith in the self-correcting power of free markets ...
- "Those of us who have looked to the self-interest of lending institutions to protect shareholders' equity, myself included, are in a state of shocked disbelief"
- Rep. Henry A. Waxman: "Do you feel that your ideology pushed you to make decisions that you wish you had not made?"
- Mr. Greenspan conceded: "Yes, I've found a flaw. I don't know how significant or permanent it is. But I've been very distressed by that fact."

The PoCSverse Biological Contagion 84 of 97

Simple disease

spreading models

Background

Prediction

Toy metapopulation models Model output Nutshell Other kinds of prediction

Next



James K. Galbraith:

The PoCSverse Biological Contagion 85 of 97

Introduction

Simple disease spreading models

Background Prediction More models

Toy metapopulation models Model output

Nutshell Other kinds of prediction

References

Next



# James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis?

The PoCSverse Biological Contagion 85 of 97

Introduction

Simple disease spreading models

Background Prediction

More mode

Toy metapopulation

lodel output

Other kinds of prediction

References



# James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three.

The PoCSverse Biological Contagion 85 of 97

Introduction

Simple disease spreading models

Background Prediction

More models

Toy metapopulation models

Nutshell
Other kinds of prediction

References



### James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics, which claims to be a science?

The PoCSverse Biological Contagion 85 of 97

Introduction

Simple disease spreading models

Prediction Prediction

Toy metapopulation

Nutshell

Other kinds of prediction
Next

References



# James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics, which claims to be a science? [JKG] It's an enormous blot on the reputation of the profession.

The PoCSverse Biological Contagion 85 of 97

Introduction

Simple disease spreading models

Prediction Prediction

Toy metapopulation

Model output Nutshell

Other kinds of prediction

References



# James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics, which claims to be a science? [JKG] It's an enormous blot on the reputation of the profession. There are thousands of economists. Most of them teach.

The PoCSverse Biological Contagion 85 of 97

Introducti

Simple disease spreading models Background

Prediction

Toy metapopulation models

Model output Nutshell

Other kinds of prediction

References



# James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics, which claims to be a science? [JKG] It's an enormous blot on the reputation of the profession. There are thousands of economists. Most of them teach. And most of them teach a theoretical framework that has been shown to be fundamentally useless.

The PoCSverse Biological Contagion 85 of 97

Introduc

Simple disease spreading models Background

Prediction

More model

Toy metapopulation models

Nutshell
Other kinds of prediction

References



# Outline

# Simple disease spreading models

Next

The PoCSverse Biological Contagion 86 of 97

### Introduction

Simple disease spreading models Background

More models Toy metapopulation Model output

Next



The PoCSverse Biological Contagion 87 of 97

### Introduction

Simple disease spreading models Background Prediction

Toy metapopulation models Model output Nutshell Other kinds of predictio

Next References

More models



Adoption of ideas/beliefs (Goffman & Newell, 1964) [11]

The PoCSverse Biological Contagion 87 of 97

# Introduction

# Simple disease spreading models

Background Prediction

More models

Toy metapopulation models Model output

Nutshell Other kinds of prediction

Next



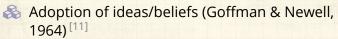
Adoption of ideas/beliefs (Goffman & Newell, 1964) [11]

Spread of rumors (Daley & Kendall, 1965) [8]

The PoCSverse Biological Contagion 87 of 97

# Introduction

Simple disease spreading models


Background

Prediction More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction
Next





Spread of rumors (Daley & Kendall, 1965) [8]

Diffusion of innovations (Bass, 1969) [2]

The PoCSverse Biological Contagion 87 of 97

# Introduction

Simple disease spreading models Background

Prediction
More models

Toy metapopulation models

Model output
Nutshell
Other kinds of prediction

References

Next



- Adoption of ideas/beliefs (Goffman & Newell, 1964)[11]
- Spread of rumors (Daley & Kendall, 1965) [8]
- A Diffusion of innovations (Bass, 1969) [2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

The PoCSverse Biological Contagion 87 of 97

### Introduction

Simple disease spreading models

Toy metapopulation

References

Next



- Adoption of ideas/beliefs (Goffman & Newell, 1964) [11]
- Spread of rumors (Daley & Kendall, 1965) [8]
- Diffusion of innovations (Bass, 1969) [2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

The PoCSverse Biological Contagion 87 of 97

#### Introduction

Simple disease spreading models Background Prediction More models Toy metapopulation

Model output
Nutshell
Other kinds of prediction
Next



- Adoption of ideas/beliefs (Goffman & Newell, 1964) [11]
- Spread of rumors (Daley & Kendall, 1965) [8]
- Diffusion of innovations (Bass, 1969) [2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

Social contagion:

The PoCSverse Biological Contagion 87 of 97

# Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model autous

Model output Nutshell Other kinds of prediction Next



- Adoption of ideas/beliefs (Goffman & Newell, 1964) [11]
- Spread of rumors (Daley & Kendall, 1965) [8]
- Diffusion of innovations (Bass, 1969) [2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

# Social contagion:

SIR may apply sometimes ...

The PoCSverse Biological Contagion 87 of 97

# Introduction Simple disease

Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of predictio

spreading models

References

Next



- Adoption of ideas/beliefs (Goffman & Newell, 1964)[11]
- Spread of rumors (Daley & Kendall, 1965) [8]
- A Diffusion of innovations (Bass, 1969) [2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

# Social contagion:

SIR may apply sometimes ...

But we need new fundamental models.

The PoCSverse Biological Contagion 87 of 97

Simple disease spreading models

Toy metapopulation

References

Next



- Adoption of ideas/beliefs (Goffman & Newell, 1964) [11]
- Spread of rumors (Daley & Kendall, 1965) [8]
- Diffusion of innovations (Bass, 1969) [2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

# Social contagion:

- SIR may apply sometimes ...
- But we need new fundamental models.
- Next up: Thresholds.

The PoCSverse Biological Contagion 87 of 97

Simple disease

#### Introduc

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction.
Next



# We really should know social contagion is different but ...



"It's contagious: Rethinking a metaphor dialogically"

Warren and Power, Culture & Psychology, 21, 359-379, 2015. [22]

The PoCSverse Biological Contagion 88 of 97

### Introduction

Simple disease spreading models Background

More models

Toy metapopulation

Next



# We really should know social contagion is different but ...



"It's contagious: Rethinking a metaphor dialogically"

Warren and Power, Culture & Psychology, 21, 359-379, 2015. [22]



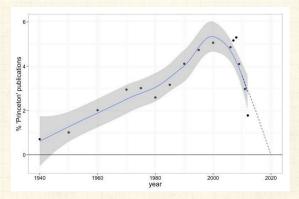
& "Facebook will lose 80% of users by 2017, say Princeton researchers" (Guardian, 2014)



"Epidemiological modeling of online social network dynamics" Spechler and Cannarella, Availabe online at http://arxiv.org/abs/1401.4208, 2014. [21]

The PoCSverse Biological Contagion 88 of 97

Introduction


Simple disease spreading models

Toy metapopulation

Next



# The Facebook Data Science team's response ::



Mike Develin, Lada Adamic, and Sean Taylor.

The PoCSverse Biological Contagion 89 of 97

Introduction

Simple disease spreading models Background

More models

Toy metapopulation Model output

Next



# References I

[1] N. T. J. Bailey.

The Mathematical Theory of Infectious Diseases and Its Applications.

Griffin, London, Second edition, 1975.

[2] F. Bass. A new product growth model for consumer durables. Manage. Sci., 15:215–227, 1969. pdf

[3] P. M. Blau and J. E. Schwartz.

Crosscutting Social Circles.

Academic Press, Orlando, FL, 1984.

[4] R. L. Breiger.
The duality of persons and groups.
Social Forces, 53(2):181–190, 1974. pdf

The PoCSverse Biological Contagion 90 of 97

Introduct

Simple disease spreading models Background Prediction More models Toy metapopulation models Model output Nutshell Other kinds of prediction.



# References II

[5] D. Brockmann and D. Helbing. The hidden geometry of complex, network-driven contagion phenomena.

Science, 342:1337-1342, 2013. pdf

- A. D. Cliff, P. Haggett, J. K. Ord, and G. R. Versey. [6] Spatial diffusion: an historical geography of epidemics in an island community. Cambridge University Press, Cambridge, UK, 1981.
- V. Colizza, A. Barrat, M. Barthelmey, A.-J. Valleron, and A. Vespignani. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLoS Med., 4:e13, 2007. pdf

The PoCSverse Biological Contagion 91 of 97

Simple disease spreading models

Toy metapopulation



# References III

- [8] D. J. Daley and D. G. Kendall. Stochastic rumours. J. Inst. Math. Appl., 1:42–55, 1965.
- [9] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling disease outbreaks in realistic urban social networks. Nature, 429:180–184, 2004. pdf

[10] J. Gleick.

The Information: A History, A Theory, A Flood.

Pantheon, 2011.

[11] W. Goffman and V. A. Newill.

Generalization of epidemic theory: An application to the transmission of ideas.

Nature, 204:225–228, 1964. pdf

■

The PoCSverse Biological Contagion 92 of 97

Simple disease

#### Introduc

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell
Other kinds of prediction



# References IV

[12] E. Hoffer.

The True Believer: On The Nature Of Mass Movements.

Harper and Row, New York, 1951.

[13] E. Hoffer.

The Passionate State of Mind: And Other Aphorisms.

Buccaneer Books, 1954.

[14] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700-721, 1927. pdf

The PoCSverse Biological Contagion 93 of 97

Introduc

Simple disease spreading models Background Prediction More models Toy metapopulation models Model output Nutshell



# References V

[15] W. O. Kermack and A. G. McKendrick.

A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.

Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf ☑

[16] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf

[17] I. M. Longini.

A mathematical model for predicting the geographic spread of new infectious agents. Math. Biosci., 90:367–383, 1988.

The PoCSverse Biological Contagion 94 of 97

Simple disease

#### Introduct

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell



# References VI

[18] J. D. Murray.

Mathematical Biology.

Springer, New York, Third edition, 2002.

[20] G. Simmel. The number of members as determining the sociological form of the group. I. American Journal of Sociology, 8:1–46, 1902. The PoCSverse Biological Contagion 95 of 97

# Introduction Simple disease

spreading models
Background
Prediction
More models
Toy metapopulation
models
Model output
Nutshell



# References VII

[21] J. A. Spechler and J. Cannarella. Epidemiological modeling of online social network dynamics.

Availabe online at http://arxiv.org/abs/1401.4208, 2014. pdf♂

[22] Z. J. Warren and S. A. Power. It's contagious: Rethinking a metaphor dialogically. Culture & Psychology, 21:359–379, 2015. pdf

[23] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf ☑

The PoCSverse Biological Contagion 96 of 97

Introductio

Simple disease spreading models Background Prediction More models Toy metapopulation models Model output Nutshell Other kinds of prediction.



# References VIII

[24] D. J. Watts, R. Muhamad, D. Medina, and P. S. Dodds.

Multiscale, resurgent epidemics in a hierarchcial metapopulation model.

Proc. Natl. Acad. Sci., 102(32):11157-11162, 2005. pdf

The PoCSverse Biological Contagion 97 of 97

### Introduction

Simple disease spreading models

More models

Toy metapopulation

