Due: Wednesday, February 2, by 11:59 pm, 2021.
Relevant clips, episodes, and slides are listed on the assignment's page:
https://pdodds.w3.uvm.edu//teaching/courses/2021-2022principles-of-complex-
systems//assignments/16/
Some useful reminders:
Deliverator: Prof. Peter Sheridan Dodds (contact through Teams)
Assistant Deliverator: Michael Arnold (contact through Teams)
Office: The Ether
Office hours: Tuesdays, 3:00 to 4:00 pm on Teams

Course website:

https://pdodds.w3.uvm.edu//teaching/courses/2021-2022principles-of-complex-systems
All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

For coding, we recommend you improve your skills with Python, R, and/or Julia. The Deliverator uses Matlab.

Graduate students are requested to use $\operatorname{LAT}_{E X}$ (or related $T_{E X}$ variant). If you are new to $A T_{E X} X$, please endeavor to submit at least n questions per assignment in $\Delta T_{E} \mathrm{X}$, where n is the assignment number.

Assignment submission:

1. Please send to both the Deliverator and Assistant Deliverator via direct message on Teams.
2. PDF only! Please name your file as follows (where the number is to be padded by a 0 if less than 10 and names are all lowercase): CSYS300assignment\%02d\$firstname-\$lastname.pdf as in CSYS300assignment06michael-palin.pdf
3. Derive the word shift equation for simple additive lexical instruments.

You have the derivation per class. The idea is to simply work through it yourself.

