Complex Networks, CSYS/MATH 303—Assignment 5 University of Vermont, Spring 2011

Dispersed: Thursday, March 10, 2011.

Due: By start of lecture, 2:30 pm, Thursday, March 24, 2011.

Some useful reminders: Instructor: Peter Dodds

Office: Farrell Hall, second floor, Trinity Campus

E-mail: peter.dodds@uvm.edu

Office hours: 3:45 pm to 4:15 pm Tuesday post class; 1:00 pm to 3:00 pm, Wednesday Course website: http://www.uvm.edu/~pdodds/teaching/courses/2011-01UVM-303

All parts are worth 3 points unless marked otherwise. Please show all your working clearly and list the names of others with whom you collaborated.

Graduate students are requested to use LATEX (or related variant).

- 1. Given N labelled nodes and allowing for all possible number of edges m, what's the total number of undirected, unweighted networks we can construct? How does this number scale with N?
- 2. Given N labelled nodes and a variable number of m edges, for what value of m do we obtain the largest diversity of networks? And for this m, how does the number of networks scale with N?
- 3. We've seen that large random networks have essentially no clustering, meaning that locally, random networks are pure branching networks. Nevertheless, a finite, non-zero number of triangles will be present.
 - For pure random networks, with connection probability $p = \langle k \rangle / (N-1)$, what is the expected total number of triangles as $N \to \infty$?
- 4. Repeat the preceding calculation for cycles of length 4 and 5 (triangles are cycles of length 3).
- 5. We've figured out in class that for large enough N (and $\langle k \rangle$ fixed), a random network always has a Poisson degree distribution. And as we've discussed, we don't find these networks in the real world (they don't arise due to simple mechanisms). Let's investigate this oddness a little further.
 - (a) Compute the expected size of the largest degree in a random network given $\langle k \rangle$ and as a function of increasing N. In other words, in selecting (with

replacement) N degrees from a Poisson distribution with mean $\langle k \rangle$, what's the expected value of the largest degree $k_{\rm max}$?

A good way to compute $k_{\rm max}$ is to equate it to the value for which we expect 1/N of our random selections to exceed. (We had a question in 300 along these lines for power-law distributions.)

(b) Now let's flip the question: How likely is it to find a very high degree node in a pure random network?

Compute the probability that a randomly selected node in a randomly selected network (specified again by N and $\langle k \rangle$) has a degree exceeding $\simeq 1 \cdot N^{\alpha}$ where $\alpha \leq 1$.

Start with the case $\alpha=1$ which is to be interpreted as a node being connected to all other N-1 nodes.