Chapter 6: Lecture 25 Linear Algebra, Course 124B, Fall, 2008

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 2

Frame 1/16

Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

Bonus example 2

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1 Bonus example 2

Frame 2/16

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus exampl

Bonus example 2

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 2

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .

Where \vec{x} lives:

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Guess who? Bonus example

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.

Where \vec{b} lives:

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 2

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.

Where \vec{b} lives:

- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?

Bonus example

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^T.

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n

Where \vec{b} lives:

- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Bonus example 1

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n

Where \vec{b} lives:

- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^T.

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Where \vec{b} lives:

- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^T.

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Where \vec{b} lives:

- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^T) = R^m$

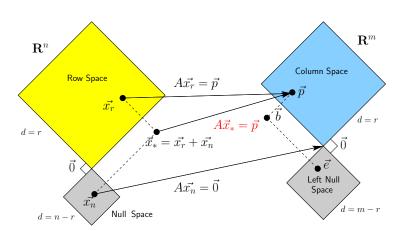
The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1 Bonus example 2

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:



The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Frame 4/16

Now we see:

 Each of the four fundamental subspaces has a 'best' orthonormal basis The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?

Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

> Bonus example 1 Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?

Bonus example 1 Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?

Bonus example 1 Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m
- ▶ We find the \hat{u}_i as eigenvectors of AA^T .

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?
Ronus example 1

Bonus example 1
Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m
- ▶ We find the \hat{u}_i as eigenvectors of AA^T .

Happy bases

• $\{\hat{v}_1, \dots, \hat{v}_r\}$ span Row space

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1 Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m
- ▶ We find the \hat{u}_i as eigenvectors of AA^T .

Happy bases

- $ightharpoonup \{\hat{v}_1,\ldots,\hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \dots, \hat{v}_n\}$ span Null space

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?

Bonus example 1 Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m
- ▶ We find the \hat{u}_i as eigenvectors of AA^T .

Happy bases

- ▶ $\{\hat{v}_1, \dots, \hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \dots, \hat{v}_n\}$ span Null space
- $\{\hat{u}_1, \dots, \hat{u}_r\}$ span Column space

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1 Bonus example 2

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m
- ▶ We find the \hat{u}_i as eigenvectors of AA^T .

Happy bases

- ▶ $\{\hat{v}_1, \dots, \hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \dots, \hat{v}_n\}$ span Null space
- ▶ $\{\hat{u}_1, \dots, \hat{u}_r\}$ span Column space
- $\{\hat{u}_{r+1}, \dots, \hat{u}_m\}$ span Left Null space

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1 Bonus example 2

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

lonus example 2

Approximating matrices with SVD

Guess who?

onus example 1

How $A\vec{x}$ works:

 $ightharpoonup A = U\Sigma V^{\mathrm{T}}$

How $A\vec{x}$ works:

- $\rightarrow A = U\Sigma V^{\mathrm{T}}$
- ▶ A sends each $\vec{v}_i \in C(A^T)$ to its partner $\vec{u}_i \in C(A)$ with a stretch/shrink factor $\sigma_i > 0$.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?
Ronus example 1

How $A\vec{x}$ works:

- $ightharpoonup A = U\Sigma V^{\mathrm{T}}$
- ▶ A sends each $\vec{v}_i \in C(A^T)$ to its partner $\vec{u}_i \in C(A)$ with a stretch/shrink factor $\sigma_i > 0$.
- ▶ A is diagonal with respect to these bases and has positive entries (all $\sigma_i > 0$).

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1

How $A\vec{x}$ works:

- $ightharpoonup A = U\Sigma V^{\mathrm{T}}$
- ▶ A sends each $\vec{v}_i \in C(A^T)$ to its partner $\vec{u}_i \in C(A)$ with a stretch/shrink factor $\sigma_i > 0$.
- ▶ A is diagonal with respect to these bases and has positive entries (all $\sigma_i > 0$).
- When viewed the right way, any A is a diagonal matrix Σ.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1

The fundamental theorem of linear algebra

Approximating matrices with SVD The basic idea

Guess who?
Bonus example 1
Bonus example 2

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1

Frame 7/16

Interpret elements of matrix A as color values of an image. The fundamental theorem of linear algebra

Approximating matrices with SVD

matrices with SVD

Guess who?

Bonus example 1 Bonus example 2

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^{\mathrm{T}} = \sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example

Bonus example 2

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^{\mathrm{T}} = \sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$$

• Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example

Bonus example 2

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^{\mathrm{T}} = \sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- ▶ Rank $r = \min(m, n)$.

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example

Bonus example 2

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^{\mathrm{T}} = \sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- ▶ Rank $r = \min(m, n)$.
- Rank r = # of pixels on shortest side.

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1
Bonus example 2

Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$A = U\Sigma V^{\mathrm{T}} = \sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- ▶ Rank $r = \min(m, n)$.
- Rank r = # of pixels on shortest side.
- ► For color: approximate 3 matrices (RGB).

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1

Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Guess who?

Bonus example 1

The fundamental theorem of linear algebra

Approximating natrices with SVD

The basic ide Guess who?

Bonus example 1

Frame 9/16

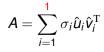
The fundamental theorem of linear algebra

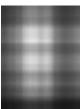
Approximating natrices with SVD

Guess who?

Bonus exampl

Bonus example 2





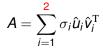
Frame 10/16

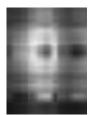
Approximating natrices with SVD

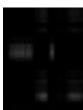
Guess who?

Guess who's

Bonus example





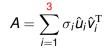


Approximating natrices with SVD

Guess who?

Panua avam

Bonus example :

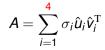


Approximating matrices with SVE

Guess who?

Guess who?

Bonus example

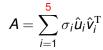


Approximating matrices with SVE

Guess who?

Rooms avams

Bonus example :



Approximating natrices with SVD

Guess who?

Guess wno?

Bonus example

Approximating matrices with SVI

Guess who?

Guess who?

Bonus example

Approximating matrices with SVE

Guess who?

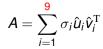
Bonus evamn

Bonus example :

Approximating natrices with SVD

Guess who?

Bonus example 1

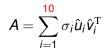


Approximating matrices with SVE

Guess who?

Bonus example

Bonus example :

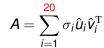


Approximating matrices with SVE

Guess who?

Guess who?

Bonus example :

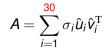


Approximating natrices with SVD

Guess who?

Bonus exampl

Bonus example :

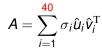


Approximating natrices with SVD

Guess who?

Bonus exampl

Bonus example :

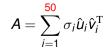


Approximating natrices with SVD

Guess who?

Bonus example

Bonus example :

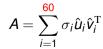


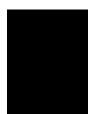


Approximating natrices with SVD

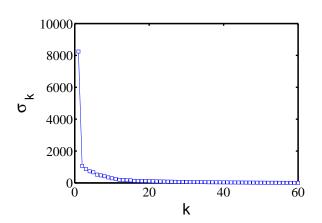
Guess who?

Bonus example





Decay of sigma values: Einstein



The fundamental theorem of linear algebra

pproximating

Guess who?

Bonus example 1
Bonus example 2

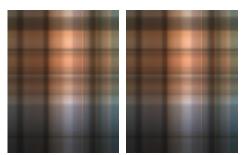
Frame 11/16

Approximating natrices with SVD

Guess who?

Guess who?

Bonus example 2



Approximating natrices with SVD

Guess who?

Guess wno?

Bonus example :

Approximating matrices with SVE

Guess who?

Bonus example



Approximating matrices with SVE

Guess who?

Guess who?

Bonus example 2

Approximating matrices with SVE

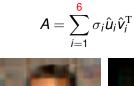
Guess who?

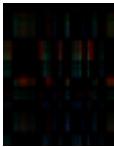
Bonus example 1

Approximating matrices with SVE

Guess who?

Bonus example





Approximating matrices with SVE

Guess who?

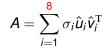
Bonus example :

Approximating matrices with SVE

Guess who?

Guess who?

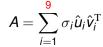
Bonus example 2



Approximating natrices with SVD

Guess who?

Bonus example



Approximating matrices with SVD

Guess who?

Bonus example

 $A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$

$A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$

The fundamental algebra

Guess who?

The fundamental

theorem of line algebra Approximating

The basic idea Guess who?

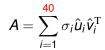
Guess who?

Bonus example 2

Approximating matrices with SVE

Guess who?

Bonus example 1

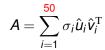


Approximating matrices with SVE

Guess who?

Guess who?

Bonus example :

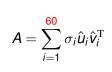


Approximating matrices with SVE

Guess who?

Bonus example

Bonus example 2

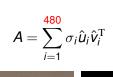


Approximating matrices with SVE

Guess who?

Guess who?

Bonus example



Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea

Bonus example 1

Bonus example 2

The fundamental theorem of linear algebra

Approximating natrices with SVD

Guess who?

Bonus example 1

Frame 13/16

$A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$

The fundamental theorem of linear algebra

Approximating natrices with SVD

The basic idea Guess who?

Bonus example 1 Bonus example 2

Image approximation (480x640)

$$A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating natrices with SVD

Guess who?

Bonus example 1 Bonus example 2

Image approximation (480x640)

$$A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who?

Bonus example 1 Bonus example 2

Image approximation (480x640)

$$A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1 Bonus example 2

$$A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who

Bonus example 1

$$A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who

Bonus example 1

$$A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who

Bonus example 1

$$A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea
Guess who?
Bonus example 1

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?
Bonus example 1

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?
Bonus example 1

Bonus example 1

$$A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear

Ch. 6: Lec. 25

Approximating

The basic idea Guess who?

algebra

Bonus example 1

$$A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Ch. 6: Lec. 25

Approximating matrices with SVE

Guess who?

Bonus example 1

$$A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Ch. 6: Lec. 25

Approximating matrices with SVE

Guess who?

Bonus example 1

$A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1

$$A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear

Ch. 6: Lec. 25

Approximating matrices with SVD

Guess who?

algebra

Bonus example 1

$A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1

$$A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental

Ch. 6: Lec. 25

theorem of linear algebra

Approximating

matrices with SVD

Guess who?

Bonus example 1

$$A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Ch. 6: Lec. 25

Approximating matrices with SVD

Guess who?

Bonus example 1

$$A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental

Ch. 6: Lec. 25

theorem of linear algebra

Approximating natrices with SVD

Guess who?

Bonus example 1

Outline

The fundamental theorem of linear algebra

Approximating matrices with SVD

The basic idea Guess who? Bonus example 1

Bonus example 2

The fundamental theorem of linear algebra

Approximating natrices with SVD

he basic idea Suess who? Ionus example 1

Bonus example 1

Frame 15/16

$A = \sum_{i=1}^{1} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$



The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{2} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 2

$$A = \sum_{i=1}^{3} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

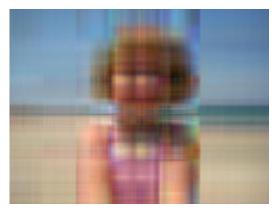
The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{4} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$





Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 2

$$A = \sum_{i=1}^{5} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental

Ch. 6: Lec. 25

theorem of linear algebra

Approximating matrices with SVE

Guess who?

Bonus example 2

$$A = \sum_{i=1}^{6} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 2

$$A = \sum_{i=1}^{7} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

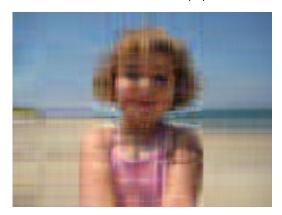
The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{8} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$



Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{9} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

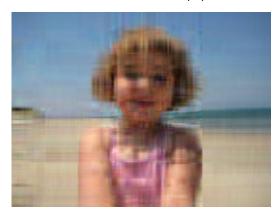
The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 2

$$A = \sum_{i=1}^{10} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$



Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 2

$$A = \sum_{i=1}^{20} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Ch. 6: Lec. 25

Approximating matrices with SVD

Guess who?

Bonus example 1

$$A = \sum_{i=1}^{30} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental

Ch. 6: Lec. 25

Approximating

Guess who?

algebra

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{40} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Ch. 6: Lec. 25

Approximating matrices with SVD

Guess who?

Bonus example 1 Bonus example 2

$$A = \sum_{i=1}^{50} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Ch. 6: Lec. 25

Approximating matrices with SVD

Guess who?

Bonus example 2

$$A = \sum_{i=1}^{60} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVE

Guess who?

Bonus example

Bonus example 2

$$A = \sum_{i=1}^{100} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental theorem of linear algebra

Ch. 6: Lec. 25

Approximating

Guess who?

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{200} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 1 Bonus example 2

$$A = \sum_{i=1}^{320} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental

Ch. 6: Lec. 25

Approximating

The basic idea Guess who?

algebra

Bonus example 1
Bonus example 2

$$A = \sum_{i=1}^{480} \sigma_i \hat{u}_i \hat{v}_i^{\mathrm{T}}$$

The fundamental

Ch. 6: Lec. 25

theorem of linear algebra

Approximating matrices with SVD

Guess who?

Bonus example 2

