Chapter 6: Lecture 25
 Linear Algebra, Course 124B, Fall, 2008

Prof. Peter Dodds

The fundamental
theorem of linear

Department of Mathematics \& Statistics
University of Vermont

Outline

The fundamental

The fundamental theorem of linear algebra

Approximating matrices with SVD
The basic idea
Guess who？
Bonus example 1
Bonus example 2

All the way with $A \vec{x}=\vec{b}$ ：

－Applies to any $m \times n$ matrix A ．
－Symmetry of A and A^{T} ．
Where \vec{x} lives：
－Row space $C\left(A^{\mathrm{T}}\right) \subset R^{n}$ ．
－（Right）Nullspace $N(A) \subset R^{n}$ ．
－ $\operatorname{dim} C\left(A^{\mathrm{T}}\right)+\operatorname{dim} N(A)=r+(n-r)=n$
－Orthogonality：$C\left(A^{\mathrm{T}}\right) \otimes N(A)=R^{n}$
Where \vec{b} lives：
－Column space $C(A) \subset R^{m}$ ．
－Left Nullspace $N\left(A^{\mathrm{T}}\right) \subset R^{m}$ ．
－ $\operatorname{dim} C(A)+\operatorname{dim} N\left(A^{\mathrm{T}}\right)=r+(m-r)=m$
－Orthogonality：$C(A) \otimes N\left(A^{\mathrm{T}}\right)=R^{m}$

Frame 3／16
回 \quad のく

Best solution \vec{x}_{*} when $\vec{b}=\vec{p}+\vec{e}$:

The fundamental theorem of linear

Approximating
matrices with SVD
The basic idea
Guess who?
Bonus example 1
Bonus example 2

Frame 4/16

$$
\text { 司 } \quad \text { Qの }
$$

Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- The \hat{v}_{i} span R^{n}
- We find the \hat{v}_{i} as eigenvectors of $A^{\mathrm{T}} A$.
- The \hat{u}_{i} span R^{m}
- We find the \hat{u}_{i} as eigenvectors of $A A^{\mathrm{T}}$.

Happy bases

- $\left\{\hat{v}_{1}, \ldots, \hat{v}_{r}\right\}$ span Row space
- $\left\{\hat{v}_{r+1}, \ldots, \hat{v}_{n}\right\}$ span Null space
- $\left\{\hat{u}_{1}, \ldots, \hat{u}_{r}\right\}$ span Column space
- $\left\{\hat{u}_{r+1}, \ldots, \hat{u}_{m}\right\}$ span Left Null space

The fundamental theorem of linear algebra

Approximating
matrices with SVD
The basic idea
Guess who?
Bonus example 1
Bonus example 2

Fundamental Theorem of Linear Algebra

－$A=U \Sigma V^{\mathrm{T}}$
－A sends each $\vec{v}_{i} \in C\left(A^{\mathrm{T}}\right)$ to its partner $\vec{u}_{i} \in C(A)$ with a stretch／shrink factor $\sigma_{i}>0$ ．
－A is diagonal with respect to these bases and has positive entries（all $\sigma_{i}>0$ ）．
－When viewed the right way，any A is a diagonal matrix Σ ．

Image approximation（80x60）

Idea：use SVD to approximate images

－Interpret elements of matrix A as color values of an image．
－Truncate series SVD representation of A ：

$$
A=U \Sigma V^{\mathrm{T}}=\sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}
$$

－Use fact that $\sigma_{1}>\sigma_{2}>\ldots>\sigma_{r}>0$ ．
－Rank $r=\min (m, n)$ ．
－Rank $r=$ \＃of pixels on shortest side．
－For color：approximate 3 matrices（RGB）．

Image approximation（80x60）

123456789102030405060
$A=$

$\sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$

Frame 10／16
回 \quad のく

Decay of sigma values: Einstein

The fundamental
theorem of linear
algebra
Approximating
matrices with SVD
The basic idea
Guess who?
Bonus example 1
Bonus example 2

Frame 11/16
司 つQल

Image approximation（480x615）

The fundamental theorem of linear algebra

Image approximation (480x640)

123456789102030405060100200320480

$$
A=\quad \sum_{i=1}
$$

Image approximation（480x640）

123456789102030405060100200320480
 $$
A=\quad \sum_{i=1}
$$
 $\sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$

The fundamental
theorem of linear
algebra
Approximating
matrices with SVD
The basic idea
Guess who？

