Chapter 2：Lecture 7

Prof．Peter Dodds

Department of Mathematics \＆Statistics
University of Vermont

Outline

Review for Exam 1

Basics：

Sections covered on first midterm：
－Chapter 1 and Chapter 2 （Sections 2．1－2．7）
－Chapter 2 is our focus
－Knowledge of Chapter 1 as needed for Chapter $2=$ solving $A \vec{x}=\vec{b}$ ．
－Want＇understanding＇and＇doing＇abilities．

Stuff to know：

Row，Column，\＆Matrix Pictures of Linear Systems $(A \vec{x}=\vec{b})$
－What dimensions of A mean：
－$m=$ number of equations
－$n=$ number of unknowns $\left(x_{1}, x_{2}, \ldots\right)$
－How to draw the row and column pictures．
－Be able to identify row picture （e．g．，as representing 2 planes in 3－d）．
－How to convert between the three pictures．

Solving $A \vec{x}=\vec{b}$ by elimination

Solve four equivalent ways：

1．Simultaneous equations（snore）
2．Row operations on augmented matrix
－Systematically transform $A \vec{x}=\vec{b}$ into $U \vec{x}=\vec{c}$
－Solve by back subsitution
3．Row operations with $E_{i j}$ and $P_{i j}$ matrices
4．Factor A as $A=L U$
－Solve two triangular systems by forward and back substitution
－First $L \vec{c}=\vec{b}$ then $U \vec{x}=\vec{c}$ ．
Understand number of solutions business：
－ 0,1 ，or ∞ ：why，when，．．．

Stuff to know：

More on $A=L U$ ：

－Be able to find the pivots of A（they live in U ）
－Understand how elimination matrices（ $E_{i j}$＇s）are constructed from multipliers（ $l_{i j}$＇s）
－Understand how L is made up of inverses of elimination matrices
－e．g．：$L=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} A$ ．
－Understand how L is made up of the $\iota_{i j}$ multipliers．
－Understand how inverses of elimination matrices are simply related to elimination matrices．

Stuff to know：

Matrix algebra
－Understand basic matrix algebra
－Understand matrix multiplication
－Understand multiplication order matters
－Understand $A B=B A$ is rarely true

Inverses

－Understand identity matrix I
－Understand $A A^{-1}=A^{-1} A=I$
－Find A^{-1} with Gauss－Jordan elimination
－Perform row reduction on augmented matrix $[A \mid I]$ ．
－Understand that that finding A^{-1} solves $A \vec{x}=\vec{b}$ but is often prohibitively expensive to do．
－$(A B)^{-1}=B^{-1} A^{-1}$

Stuff to know：

Transposes

－Definition：flip entries across main diagonal
－$A=A^{\mathrm{T}}: A$ is symmetric
－Important property：$(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$

Extra pieces：
－If $A \vec{x}=\overrightarrow{0}$ has a non－zero solution，A has no inverse
－If $A \vec{x}=\overrightarrow{0}$ has a non－zero solution，then $A \vec{x}=\vec{b}$ always has infinitely many solutions．
－$\left(A^{-1}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-1}$

