Chapter 2: Lecture 2
 Linear Algebra, Course 124B, Fall, 2008

Prof. Peter Dodds

Department of Mathematics \& Statistics
University of Vermont

Outline

Solving $A \vec{x}=\vec{b}$

Solving $A \vec{x}=\vec{b}$ ：

Reading：

－Presumed： 1.1 and 1.2
－First week：2．1， 2.2
－Next Tuesday： 2.3
Lectures online：
－Gil Strang speaks（ \boxplus ）（18．06 at MIT，2006）．

Solving $A \vec{x}=\vec{b}$ ：

－We（people＋computers）solve systems of linear equations by a systematic method of Elimination followed by Back substitution
－Due to our man Gauss，hence Gaussian elimination．
－Our first example：

$$
\begin{aligned}
& -x_{1}+3 x_{2}=1 \\
& 2 x_{1}+x_{2}=5
\end{aligned}
$$

Gaussian elimination：

Basic elimination rules（roughly）：

1．Strategically，mechanically remove unwanted entries by subtracting a multiple of a row from another．
2．Swap rows if needed to create an＇upper triangular form＇
e．g．

$$
\begin{aligned}
x_{2} & =3 \\
2 x_{1}-x_{2} & =-1
\end{aligned} \Rightarrow \begin{aligned}
2 x_{1}-x_{2} & =-1 \\
x_{2} & =3
\end{aligned}
$$

Gaussian elimination：

Solve：

$$
\begin{gathered}
2 x-3 y=3 \\
4 x-5 y+z=7 \\
2 x-y-3 z=5
\end{gathered}
$$

Gaussian elimination：

Summary：
Using row operations，we turned this problem：

$$
A \vec{x}=\vec{b}:\left[\begin{array}{ccc}
2 & -3 & 0 \\
4 & -5 & 1 \\
2 & -1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
7 \\
5
\end{array}\right]
$$

into this problem：

$$
U \vec{x}=\vec{d}:\left[\begin{array}{ccc}
2 & -3 & 0 \\
0 & 1 & 1 \\
0 & 0 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

and the latter is easy to solve using back substitution．

Gaussian elimination：

Defn：

The entries along U＇s main diagonal the pivots of A ．（The pivots are hidden－elimination finds them．）

Defn：

A matrix with only zeros below the main diagonal is called upper triangular．A matrix with only zeros above the main diagonal is called lower triangular．We get from A to U and the latter is always upper triangular．

Defn：
Singular means a system has no unique solution．
－It may have no solutions or infinitely many solutions．
－Singular＝archaic way of saying＇messed up．＇

Truth：

If at least one pivot is zero，the matrix will be singular（but the reverse is not necessarily true）．

Frame 8／10
回 つのく

Gaussian elimination:

The one true method:

- We simplify A using elimination in the same way every time.
- Eliminate entries one column at a time, moving left to right, and down each column.

Gaussian elimination：

－To eliminate entry in row i of j th column，subtract a multiple $\ell_{i j}$ of the j th row from i ．
－For example：

$$
\begin{aligned}
& \ell_{21}=1 / 2, \ell_{31}=-1 / 2, \ell_{41}=\text { ?. }
\end{aligned}
$$

－Note：we cannot find ℓ_{32} etc．，until we are finished with row 1．Pivots are hidden！
－Note：the denominator of each $\ell_{i j}$ multiplier is the pivot in the j th column．

