P What's Principles of Complex Systems, CSYS/MATH 300
 The Story?
 University of Vermont, Fall 2014
 Assignment 8 - code name: Octarine [J

Dispersed: Friday, October 31, 2014.
Due: By start of lecture, 1:00 pm, Thursday, November 6, 2014.
Some useful reminders:
Instructor: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 2:30 pm to $3: 45 \mathrm{pm}$ on Tuesday, $12: 30 \mathrm{pm}$ to $2: 00 \mathrm{pm}$ on Wednesday
Course website: http://www.uvm.edu/~pdodds/teaching/courses/2014-08UVM-300
All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

Graduate students are requested to use ${ }^{A T} T_{E X}$ (or related $T_{E X}$ variant).

Also: Please submit your project's current state of development.

1. $(3+3+3+3+3)$ More on the power law stuff:

We take a look at the $80 / 20$ rule, 1 per centers, and similar concepts.
Take x to be the wealth held by an individual in a population of n people, and the number of individuals with wealth between x and $x+\mathrm{d} x$ to be approximately $N(x) \mathrm{d} x$.

Given a power-law size frequency distribution $N(x)=c x^{-\gamma}$ where $x_{\text {min }} \ll x \ll \infty$, determine the value of γ for which the so-called 80/20 rule holds. In other words, find γ for which the bottom $4 / 5$ of the population holds $1 / 5$ of the overall wealth, and the top $1 / 5$ holds the remaining $4 / 5$.

Assume the mean is finite, i.e., $\gamma>2$.
(a) Determine the total wealth W in the system given $\int_{x_{\text {min }}}^{\infty} \mathrm{d} x N(x)=n$.
(b) Imagine that $100 q$ percent of the population holds $100(1-r)$ percent of the wealth.

Show γ depends on q and r as

$$
\gamma=1+\frac{\ln \frac{1}{(1-q)}}{\ln \frac{1}{(1-q)}-\ln \frac{1}{r}}
$$

(c) Given the above, is every pairing of q and r possible?
(d) Find γ for the $80 / 20$ requirement ($q=r=4 / 5$).
(e) For the " $80 / 20$ " γ you find, determine how much wealth $100 q$ percent of the population possesses as a function of q and plot the result.
2. $(3+3+3)$ Optional:

Solve Krapivsky-Redner's model for the pure linear attachment kernel $A_{k}=k$.
Starting point:

$$
n_{k}=\frac{1}{2}(k-1) n_{k-1}-\frac{1}{2} k n_{k}+\delta_{k 1}
$$

with $n_{0}=0$.
(a) Determine n_{1}.
(b) Find a recursion relation for n_{k} in terms of n_{k-1}.
(c) Now find

$$
n_{k}=\frac{4}{k(k+1)(k+2)}
$$

for all k and hence determine γ.
3. $(3+3)$ Optional:

From lectures:
(a) Starting from the recursion relation

$$
n_{k}=\frac{A_{k-1}}{\mu+A_{k}} n_{k-1},
$$

and $n_{1}=\mu /\left(\mu+A_{1}\right)$, show that the expression for n_{k} for the Krapivsky-Redner model with an asymptotically linear attachment kernel A_{k} is:

$$
\frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1+\frac{\mu}{A_{j}}}
$$

(b) Now show that if $A_{k} \rightarrow k$ for $k \rightarrow \infty$ (or for large k), we obtain $n_{k} \rightarrow k^{-\mu-1}$.
4. $(3+3+3)$ Optional:

From lectures, complete the analysis for the Krapivsky-Redner model with attachment kernel:

$$
A_{1}=\alpha \text { and } A_{k}=k \text { for } k \geq 2
$$

Find the scaling exponent $\gamma=\mu+1$ by finding μ. From lectures, we assumed a linear growth in the sum of the attachment kernel weights $\mu t=\sum_{k=1}^{\infty} N_{k}(t) A_{k}$, with $\mu=2$ for the standard kernel $A_{k}=k$.
We arrived at this expression for μ which you can use as your starting point:

$$
1=\sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1+\frac{\mu}{A_{j}}}
$$

(a) Show that the above expression leads to

$$
\frac{\mu}{\alpha}=\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2+\mu)}{\Gamma(k+\mu+1)}
$$

Hint: you'll want to separate out the $j=1$ case for which $A_{j}=\alpha$.
(b) Now use result that [1]

$$
\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)}=\frac{\Gamma(a+2)}{(b-a-1) \Gamma(b+1)}
$$

to find the connection

$$
\mu(\mu-1)=2 \alpha
$$

and show this leads to

$$
\mu=\frac{1+\sqrt{1+8 \alpha}}{2} .
$$

(c) Interpret how varying α affects the exponent γ, explaining why $\alpha<1$ and $\alpha>1$ lead to the particular values of γ that they do.

References

[1] P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63:066123, 2001. pdf [J]

